""" ROUGE evaluation script for LexiMind. Computes ROUGE-1, ROUGE-2, and ROUGE-L scores on summarization outputs with support for batched inference and customizable metrics. Author: Oliver Perrin Date: December 2025 """ from __future__ import annotations import argparse import json import sys from collections import defaultdict from pathlib import Path from statistics import fmean from typing import Dict, Iterable, List, Sequence, Tuple from rouge_score import rouge_scorer # type: ignore[import-untyped] from tqdm import tqdm PROJECT_ROOT = Path(__file__).resolve().parent.parent if str(PROJECT_ROOT) not in sys.path: sys.path.insert(0, str(PROJECT_ROOT)) from src.inference.factory import create_inference_pipeline def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser(description="Evaluate LexiMind summaries with ROUGE metrics.") parser.add_argument( "data", type=Path, help="Path to JSONL file with source text and gold summaries." ) parser.add_argument( "checkpoint", type=Path, help="Path to the trained checkpoint (e.g., checkpoints/best.pt)." ) parser.add_argument( "labels", type=Path, help="Path to label metadata (e.g., artifacts/labels.json)." ) parser.add_argument( "--tokenizer-dir", type=Path, default=Path("artifacts/hf_tokenizer"), help="Directory containing the saved tokenizer artifacts.", ) parser.add_argument( "--model-config", type=Path, default=None, help="Optional YAML config describing the model architecture.", ) parser.add_argument( "--device", type=str, default="cpu", help="Device to run inference on (cpu or cuda)." ) parser.add_argument( "--batch-size", type=int, default=8, help="Number of samples per inference batch." ) parser.add_argument( "--max-samples", type=int, default=None, help="If provided, limit evaluation to the first N samples for quick smoke tests.", ) parser.add_argument( "--max-length", type=int, default=128, help="Maximum length to pass into the summarization head during generation.", ) parser.add_argument( "--metrics", type=str, nargs="+", default=("rouge1", "rouge2", "rougeL"), help="ROUGE metrics to compute.", ) parser.add_argument( "--source-field", type=str, default="source", help="Field name containing the input document in the JSONL examples.", ) parser.add_argument( "--target-field", type=str, default="summary", help="Field name containing the reference summary in the JSONL examples.", ) parser.add_argument( "--no-stemmer", action="store_true", help="Disable Porter stemming inside the ROUGE scorer (defaults to enabled).", ) parser.add_argument( "--output", type=Path, default=None, help="Optional path to save a JSON report with aggregate metrics and sample counts.", ) return parser.parse_args() def load_examples( path: Path, source_field: str, target_field: str, max_samples: int | None, ) -> List[Tuple[str, str]]: examples: List[Tuple[str, str]] = [] with path.open("r", encoding="utf-8") as handle: for line in handle: line = line.strip() if not line: continue record = json.loads(line) try: source = str(record[source_field]) target = str(record[target_field]) except KeyError as exc: # pragma: no cover - invalid data surface at runtime raise KeyError( f"Missing field in record: {exc} (available keys: {list(record)})" ) from exc examples.append((source, target)) if max_samples is not None and len(examples) >= max_samples: break if not examples: raise ValueError(f"No examples loaded from {path}") return examples def batched( items: Sequence[Tuple[str, str]], batch_size: int ) -> Iterable[Sequence[Tuple[str, str]]]: for start in range(0, len(items), batch_size): yield items[start : start + batch_size] def aggregate_scores(raw_scores: Dict[str, Dict[str, List[float]]]) -> Dict[str, Dict[str, float]]: aggregated: Dict[str, Dict[str, float]] = {} for metric, components in raw_scores.items(): aggregated[metric] = { component: (fmean(values) if values else 0.0) for component, values in components.items() } return aggregated def main() -> None: args = parse_args() pipeline, _ = create_inference_pipeline( checkpoint_path=args.checkpoint, labels_path=args.labels, tokenizer_dir=args.tokenizer_dir, model_config_path=args.model_config, device=args.device, summary_max_length=args.max_length, ) examples = load_examples(args.data, args.source_field, args.target_field, args.max_samples) scorer = rouge_scorer.RougeScorer(list(args.metrics), use_stemmer=not args.no_stemmer) score_store: Dict[str, Dict[str, List[float]]] = defaultdict(lambda: defaultdict(list)) for batch in tqdm( list(batched(examples, args.batch_size)), desc="Evaluating", total=(len(examples) + args.batch_size - 1) // args.batch_size, ): documents = [item[0] for item in batch] references = [item[1] for item in batch] predictions = pipeline.summarize(documents, max_length=args.max_length) for reference, prediction in zip(references, predictions, strict=False): scores = scorer.score(reference, prediction) for metric_name, score in scores.items(): score_store[metric_name]["precision"].append(score.precision) score_store[metric_name]["recall"].append(score.recall) score_store[metric_name]["fmeasure"].append(score.fmeasure) aggregated = aggregate_scores(score_store) report = { "num_examples": len(examples), "metrics": aggregated, "config": { "data": str(args.data), "checkpoint": str(args.checkpoint), "tokenizer_dir": str(args.tokenizer_dir), "metrics": list(args.metrics), "max_length": args.max_length, "batch_size": args.batch_size, "device": args.device, }, } print(json.dumps(report, indent=2)) if args.output: args.output.parent.mkdir(parents=True, exist_ok=True) with args.output.open("w", encoding="utf-8") as handle: json.dump(report, handle, ensure_ascii=False, indent=2) if __name__ == "__main__": main()