File size: 7,933 Bytes
4cd4e6d
 
 
 
9daa7e5
dab38fa
4cd4e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

import re, os, tempfile, math
import gradio as gr
import pandas as pd
import torch
print(f"Using torch version: {torch.__version__}")
import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from functools import lru_cache
from transformers import pipeline
import emoji
from langdetect import detect, DetectorFactory
DetectorFactory.seed = 0  # deterministic language detection

# ----------------------
# Models and pipelines
# ----------------------
SENTIMENT_CHOICES = {
    "SST-2 (binary, reviews)": "distilbert-base-uncased-finetuned-sst-2-english",  # POSITIVE/NEGATIVE
    "Twitter (EN, 3-class)": "cardiffnlp/twitter-roberta-base-sentiment-latest",    # NEGATIVE/NEUTRAL/POSITIVE
    "Twitter (Multilingual, 3-class)": "cardiffnlp/twitter-xlm-roberta-base-sentiment"
}
EMOTION_MODEL = "bhadresh-savani/distilbert-base-uncased-emotion"  # sadness/joy/love/anger/fear/surprise

@lru_cache(maxsize=8)
def get_pipe(task, model_id):
    # device_map="auto" if GPU is present in Colab; else CPU fallback
    return pipeline(task, model=model_id, tokenizer=model_id if "cardiffnlp" in model_id else None)

# ----------------------
# Text utilities
# ----------------------
URL_RE = re.compile(r"https?://\S+|www\.\S+")
MENTION_RE = re.compile(r"@\w+")
HASHTAG_RE = re.compile(r"#(\w+)")

def clean_line(s, demojize=True, strip_social=True, lower=False):
    if demojize:
        s = emoji.demojize(s, language='en')
    if strip_social:
        s = URL_RE.sub("", s)
        s = MENTION_RE.sub("", s)
        # Keep hashtag token but turn into plain word
        s = HASHTAG_RE.sub(r"\1", s)
    s = s.strip()
    if lower:
        s = s.lower()
    return s

def detect_langs(lines, probe=30):
    # quick language probe on a sample
    sample = [l for l in lines if l.strip()][:probe]
    counts = {}
    for s in sample:
        try:
            code = detect(s)
            counts[code] = counts.get(code, 0) + 1
        except:
            counts["unk"] = counts.get("unk", 0) + 1
    total = sum(counts.values()) or 1
    share_en = counts.get("en", 0) / total
    return counts, share_en

# ----------------------
# Core analyzer
# ----------------------
def run_analysis(
    text_block, file_obj, text_col, mode, sentiment_model_choice, auto_model, demojize_opt,
    strip_social_opt, lower_opt, batch_size
):
    # Collect lines from textbox and/or CSV
    lines = []
    if text_block:
        lines.extend([l.rstrip() for l in text_block.splitlines() if l.strip()])

    df_in = None
    if file_obj is not None:
        try:
            df_in = pd.read_csv(file_obj.name)
            use_col = text_col if (text_col and text_col in df_in.columns) else None
            if not use_col:
                # naive auto-pick
                for c in ["text", "message", "msg", "content", "body"]:
                    if c in df_in.columns:
                        use_col = c
                        break
            if not use_col:
                return (pd.DataFrame([{"error": "CSV loaded, but no text column selected/found."}]),
                        plt.figure(), gr.update(value=None), "No language info")
            lines.extend([str(x) for x in df_in[use_col].astype(str).tolist()])
        except Exception as e:
            return (pd.DataFrame([{"error": f"Failed to read CSV: {e}"}]),
                    plt.figure(), gr.update(value=None), "No language info")

    if not lines:
        return (pd.DataFrame([{"error": "Enter text or upload CSV with a text column."}]),
                plt.figure(), gr.update(value=None), "No language info")

    # Preprocess
    proc = [clean_line(l, demojize=demojize_opt, strip_social=strip_social_opt, lower=lower_opt) for l in lines]

    # Language probe to optionally switch sentiment model
    lang_counts, share_en = detect_langs(proc, probe=min(30, len(proc)))
    lang_info = f"Lang probe (top): {dict(sorted(lang_counts.items(), key=lambda x: -x[1])[:3])}, EN share≈{round(share_en,2)}"

    # Choose model
    if mode == "Sentiment":
        if auto_model:
            model_id = SENTIMENT_CHOICES["Twitter (EN, 3-class)"] if share_en >= 0.6 else SENTIMENT_CHOICES["Twitter (Multilingual, 3-class)"]
        else:
            model_id = SENTIMENT_CHOICES[sentiment_model_choice]
        pipe = get_pipe("sentiment-analysis", model_id)
    else:
        pipe = get_pipe("text-classification", EMOTION_MODEL)

    # Batched inference for speed
    outputs = []
    for i in range(0, len(proc), batch_size):
        batch = proc[i:i+batch_size]
        outs = pipe(batch, batch_size=batch_size, truncation=True)
        # normalize to list[dict]
        for out in outs:
            out0 = out[0] if isinstance(out, list) else out
            outputs.append({"label": out0["label"], "score": float(out0["score"])})

    # Build results DataFrame
    rows = []
    for idx, (raw, out) in enumerate(zip(lines, outputs), 1):
        rows.append({
            "idx": idx,
            "text": raw,
            "label": out["label"],
            "score": round(out["score"], 4)
        })
    df = pd.DataFrame(rows)

    # Distribution plot (matplotlib)
    counts = df["label"].value_counts().sort_values(ascending=False)
    fig, ax = plt.subplots(figsize=(6.5, 3.2))
    counts.plot(kind="bar", ax=ax, color="#4C78A8")
    ax.set_title("Label Distribution")
    ax.set_xlabel("Label")
    ax.set_ylabel("Count")
    plt.tight_layout()

    # Export to CSV
    tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
    df.to_csv(tmp.name, index=False)

    return df, fig, tmp.name, lang_info

# ----------------------
# UI
# ----------------------
with gr.Blocks(title="Chat Mood Analyzer — Ultimate") as demo:
    gr.Markdown("## Chat Mood Analyzer — Ultimate Edition")

    with gr.Row():
        with gr.Column():
            txt = gr.Textbox(lines=10, label="Paste chat (one message per line)")
            file_in = gr.File(label="Or upload CSV", file_types=[".csv"], file_count="single")
            text_col = gr.Textbox(value="", label="CSV text column (auto-detect if blank)")

            mode = gr.Radio(["Sentiment", "Emotion"], value="Sentiment", label="Analysis mode")

            with gr.Accordion("Sentiment model settings", open=False):
                auto_model = gr.Checkbox(value=True, label="Auto-pick tweet-aware EN vs Multilingual")
                sentiment_model = gr.Dropdown(
                    choices=list(SENTIMENT_CHOICES.keys()),
                    value="Twitter (EN, 3-class)",
                    label="Manual model (used if Auto is OFF)"
                )
                gr.Markdown("Tip: Twitter models understand slang/emojis better than SST‑2 review models.")

            with gr.Accordion("Preprocessing", open=False):
                demojize_opt = gr.Checkbox(value=True, label="Convert emojis to text (:face_with_tears_of_joy:)")
                strip_social_opt = gr.Checkbox(value=True, label="Strip URLs/@mentions/#hashtags")
                lower_opt = gr.Checkbox(value=False, label="Lowercase text")

            batch_size = gr.Slider(1, 64, value=16, step=1, label="Batch size")

            run = gr.Button("Analyze", variant="primary")
            clear = gr.ClearButton([txt, file_in])

        with gr.Column():
            out_table = gr.Dataframe(label="Per-message results", wrap=True)
            out_plot = gr.Plot(label="Label distribution")
            download = gr.File(label="Download results (.csv)")
            lang_probe = gr.Markdown()

    evt = run.click(
        fn=run_analysis,
        inputs=[txt, file_in, text_col, mode, sentiment_model, auto_model,
                demojize_opt, strip_social_opt, lower_opt, batch_size],
        outputs=[out_table, out_plot, download, lang_probe],
        concurrency_limit=4,
        show_progress=True
    )

    demo.queue(max_size=64, default_concurrency_limit=2)
    demo.launch(share=True)