Spaces:
Running
Running
File size: 26,686 Bytes
d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 88c88a0 d96041f 88c88a0 d96041f d7261e5 88c88a0 62bcb89 d96041f d7261e5 88c88a0 62bcb89 93c73f4 d7261e5 62bcb89 d96041f d7261e5 62bcb89 d7261e5 d96041f 88c88a0 62bcb89 88c88a0 d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 59969cc d7261e5 b2aa74a d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 d96041f d7261e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
"""
ProVerBs Ultimate Brain with Complete Voice Cloning
Integrates Supertonic voice cloning with all controls
"""
# Import everything from app_ultimate_brain
import sys
import os
sys.path.append(os.path.dirname(__file__))
import gradio as gr
from huggingface_hub import InferenceClient
import json
import os
from datetime import datetime
from typing import Dict, List, Optional
import requests
# Import Unified Brain
from unified_brain import UnifiedBrain, ReasoningContext
# Import Performance & Analytics
from performance_optimizer import performance_cache, performance_monitor, with_caching
from analytics_seo import analytics_tracker, SEOOptimizer
# Import Voice Cloning
from supertonic_voice_module import create_supertonic_interface
# Import Document Processor
from document_processor import DocumentProcessor
# Define class FIRST
class UltimateLegalBrain:
def __init__(self):
self.brain = UnifiedBrain()
self.legal_modes = {
"navigation": "π Navigation Guide",
"general": "π¬ General Legal",
"document_validation": "π Document Validator",
"legal_research": "π Legal Research",
"etymology": "π Etymology Expert",
"case_management": "πΌ Case Management",
"regulatory_updates": "π Regulatory Updates"
}
async def process_legal_query(self, query: str, mode: str, ai_provider: str = "huggingface", use_reasoning_protocols: bool = True, **kwargs) -> Dict:
reasoning_result = None
if use_reasoning_protocols:
preferences = {'use_reflection': mode in ['document_validation', 'legal_research'], 'multi_agent': False}
reasoning_result = await self.brain.process(query=query, preferences=preferences, execution_mode='sequential')
legal_prompt = self.get_legal_system_prompt(mode)
if reasoning_result and reasoning_result['success']:
reasoning_trace = "\n".join([f"π§ {r['protocol']}: {', '.join(r['trace'][:2])}" for r in reasoning_result['results']])
enhanced_query = f"{legal_prompt}\n\nReasoning Analysis:\n{reasoning_trace}\n\nUser Query: {query}"
else:
enhanced_query = f"{legal_prompt}\n\nUser Query: {query}"
return {"enhanced_query": enhanced_query, "reasoning_result": reasoning_result, "mode": mode, "ai_provider": ai_provider}
def get_legal_system_prompt(self, mode: str) -> str:
prompts = {
"navigation": "You are a ProVerBs Legal AI Navigation Guide with advanced reasoning capabilities.",
"general": "You are a General Legal Assistant powered by ADAPPT-Iβ’ reasoning technology.",
"document_validation": "You are a Document Validator using Chain-of-Thought and Self-Consistency protocols.",
"legal_research": "You are a Legal Research Assistant with RAG and Tree-of-Thoughts capabilities.",
"etymology": "You are a Legal Etymology Expert with multi-step reasoning.",
"case_management": "You are a Case Management Helper with ReAct protocol integration.",
"regulatory_updates": "You are a Regulatory Monitor with real-time analysis capabilities."
}
return prompts.get(mode, prompts["general"])
async def respond_with_ultimate_brain(message, history: list, mode: str, ai_provider: str, use_reasoning: bool, max_tokens: int, temperature: float, top_p: float, hf_token = None):
import time
start_time = time.time()
brain_result = await ultimate_brain.process_legal_query(query=message, mode=mode, ai_provider=ai_provider, use_reasoning_protocols=use_reasoning)
if use_reasoning and brain_result['reasoning_result']:
reasoning_info = "π§ **Reasoning Protocols Applied:**\n"
for r in brain_result['reasoning_result']['results']:
reasoning_info += f"- {r['protocol']}: β
{r['status']}\n"
yield reasoning_info + "\n\n"
if ai_provider == "huggingface":
token = hf_token.token if hf_token else None
client = InferenceClient(token=token, model="meta-llama/Llama-3.3-70B-Instruct")
messages = [{"role": "system", "content": brain_result['enhanced_query']}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = reasoning_info if use_reasoning and brain_result['reasoning_result'] else ""
try:
for chunk in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
if chunk.choices and chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
yield response
except Exception as e:
yield f"{response}\n\nβ Error: {str(e)}"
# Custom CSS - Simplified with logo styling
# Custom CSS - Futuristic Gold and Blue Theme
custom_css = """
.gradio-container {
max-width: 1400px !important;
background-color: #0a0e17 !important;
}
.header-section {
text-align: center; padding: 40px 20px;
background: linear-gradient(135deg, #001529 0%, #003366 50%, #8a6e14 100%);
color: #ffffff;
border-radius: 12px; margin-bottom: 20px;
border: 1px solid #D4AF37;
box-shadow: 0 4px 20px rgba(212, 175, 55, 0.2);
}
.header-section h1 {
font-size: 3rem; margin-bottom: 10px; font-weight: 700;
text-shadow: 2px 2px 4px rgba(0,0,0,0.5);
background: linear-gradient(to right, #ffffff, #FFD700);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.header-section p {
color: #FFD700;
font-weight: 700;
font-size: 1.2rem;
text-shadow: 1px 1px 1px #000000;
}
.brain-badge {
display: inline-block;
background: linear-gradient(45deg, #FFD700, #FDB931);
color: #000000;
padding: 8px 16px; border-radius: 20px; font-weight: 800;
margin: 10px 5px;
border: 2px solid #FFFFFF;
box-shadow: 0 0 15px rgba(255, 215, 0, 0.6);
}
.logo-circle img {
border-radius: 50% !important;
box-shadow: 0 0 35px rgba(255, 215, 0, 0.8) !important;
border: 5px solid #FFD700 !important;
object-fit: cover !important;
}
/* Tab Styling */
.tabs button.selected {
color: #FFD700 !important;
border_bottom: 2px solid #FFD700 !important;
font-weight: bold;
}
/* Global Text Color Override for visibility */
body, .gradio-container, .prose {
color: #FFD700 !important;
}
"""
# SEO
seo_meta = SEOOptimizer.get_meta_tags()
seo_structured = SEOOptimizer.get_structured_data()
# Initialize AFTER class definition
ultimate_brain = UltimateLegalBrain()
document_processor = DocumentProcessor()
# Override the demo with voice cloning integrated
demo_with_voice = gr.Blocks(title="ProVerBs Ultimate Legal AI Brain")
with demo_with_voice:
gr.HTML(f"<style>{custom_css}</style>")
# Add SEO tags
gr.HTML(seo_meta + seo_structured)
# Header with Rotating Logos - Using Gradio Image components (Method 3 - WORKS!)
assets_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
logo_paths = [
os.path.join(assets_dir, 'logo_1.jpg'),
os.path.join(assets_dir, 'logo_2.jpg'),
os.path.join(assets_dir, 'logo_3.jpg')
]
gr.HTML("""
<div class="header-section">
<h1>βοΈ ProVerBs Ultimate Legal AI Brain</h1>
<p style="font-size: 1.3rem;">Powered by Pro'VerBsβ’ & ADAPPT-Iβ’ Technology</p>
</div>
""")
# Single rotating logo display
gr.HTML('<div style="text-align: center; margin: 20px 0;"><h3 style="color: #667eea;">Our Brand Identity</h3></div>')
with gr.Row():
rotating_logo = gr.Image(
value=logo_paths[0],
label="",
show_label=False,
height=180,
width=180,
container=False,
elem_classes="logo-circle",
elem_id="main_rotating_logo"
)
# Hidden state to track current logo index
logo_index_state = gr.State(0)
# Function to rotate logo
def rotate_logo(current_index):
import time
time.sleep(60) # Wait 60 seconds
next_index = (current_index + 1) % 3
return logo_paths[next_index], next_index
# Set up automatic rotation on load
demo_with_voice.load(
fn=lambda: (logo_paths[0], 0),
outputs=[rotating_logo, logo_index_state]
)
gr.HTML("""
<div style="text-align: center; margin-top: 10px;">
<div>
<span class="brain-badge">π§ 100+ Reasoning Protocols</span>
<span class="brain-badge">π€ 6 AI Models</span>
<span class="brain-badge">βοΈ 7 Legal Modes</span>
<span class="brain-badge">ποΈ Voice Cloning</span>
</div>
<p style="font-size: 0.9rem; margin-top: 15px; opacity: 0.9;">
Chain-of-Thought β’ Self-Consistency β’ Tree-of-Thoughts β’ ReAct β’ Reflexion β’ RAG<br>
Quantum Reasoning β’ Multi-Agent β’ Voice Cloning β’ Audio Processing
</p>
</div>
""")
with gr.Tabs():
# Welcome Tab
with gr.Tab("π Welcome"):
gr.Markdown("""
## Welcome to the Ultimate ProVerBs Legal AI Brain
### π§ Unified Reasoning Brain (100+ Protocols)
**Core Reasoning Protocols:**
- Chain-of-Thought (CoT) - Step-by-step reasoning
- Self-Consistency - Multiple reasoning paths
- Tree-of-Thoughts (ToT) - Branching exploration
- ReAct - Reason + Act cycles
- Reflexion - Self-reflection with memory
- RAG - Retrieval-Augmented Generation
### π€ 6 AI Model Options:
- π€ HuggingFace Llama-3.3-70B (Free, always available)
- π§ GPT-4 Turbo (OpenAI)
- β¨ Gemini 3.0 (Google)
- π Perplexity AI (Research)
- π₯· Ninja AI
- π» LM Studio (Local)
### βοΈ 7 Specialized Legal Modes:
- Navigation | General Legal | Document Validation
- Legal Research | Etymology | Case Management | Regulatory Updates
### ποΈ **NEW! Supertonic Voice Cloning:**
- Record voice samples
- Clone voices with text-to-speech
- Professional audio processing
- Voice profile management
- **Full controls**: Play, Record, Pause, Rewind, etc.
**Get Started:** Click "π€ AI Legal Chatbot" or "ποΈ Voice Cloning" tab!
""")
# AI Chatbot Tab (copy from original)
with gr.Tab("π€ AI Legal Chatbot"):
gr.Markdown("""
## Multi-AI Legal Chatbot
Select your AI model and legal assistant mode below!
""")
with gr.Row():
ai_provider_selector = gr.Dropdown(
choices=[
("π€ Llama-3.3-70B (Free)", "huggingface"),
("π§ GPT-4 Turbo", "gpt4"),
("β¨ Gemini 3.0", "gemini"),
("π Perplexity AI", "perplexity"),
("π₯· Ninja AI", "ninjaai"),
("π» LM Studio", "lmstudio")
],
value="huggingface",
label="π€ AI Model"
)
mode_selector = gr.Dropdown(
choices=[
("π Navigation", "navigation"),
("π¬ General Legal", "general"),
("π Document Validator", "document_validation"),
("π Legal Research", "legal_research"),
("π Etymology", "etymology"),
("πΌ Case Management", "case_management"),
("π Regulatory Updates", "regulatory_updates")
],
value="general",
label="βοΈ Legal Mode"
)
use_reasoning_toggle = gr.Checkbox(
label="π§ Enable Reasoning Protocols",
value=True,
info="Use 100+ reasoning protocols for enhanced analysis"
)
chatbot_interface = gr.ChatInterface(
respond_with_ultimate_brain,
chatbot=gr.Chatbot(
height=550,
placeholder="π¬ Ultimate Legal AI ready! Ask anything...",
show_label=False
),
textbox=gr.Textbox(
placeholder="Ask your legal question here...",
container=False,
scale=7
),
additional_inputs=[
mode_selector,
ai_provider_selector,
use_reasoning_toggle,
gr.Slider(128, 4096, value=2048, step=128, label="Max Tokens"),
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
],
examples=[
["What reasoning protocols are available?"],
["Analyze this contract using Chain-of-Thought reasoning"],
["Research case law with Tree-of-Thoughts exploration"]
],
cache_examples=False
)
# Voice Cloning Tab - FULL SUPERTONIC INTERFACE
with gr.Tab("ποΈ Voice Cloning"):
create_supertonic_interface()
# Document Processing Tab - NEW!
with gr.Tab("π Document Processing"):
gr.Markdown("""
## π Document Processing & OCR
Upload documents, images, or URLs to extract text and analyze with AI.
**Supported formats:**
- π PDF documents
- πΌοΈ Images (PNG, JPG, JPEG) with OCR
- βοΈ Handwriting recognition
- π Text files (.txt)
- π Word documents (.docx)
- π Web URLs
""")
with gr.Tabs():
# File Upload Tab
with gr.Tab("π Upload File"):
file_input = gr.File(
label="Upload Document",
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".txt", ".docx"],
type="filepath"
)
process_file_btn = gr.Button("π Process File", variant="primary")
# URL Input Tab
with gr.Tab("π From URL"):
url_input = gr.Textbox(
label="Enter URL",
placeholder="https://example.com/document.pdf",
lines=1
)
process_url_btn = gr.Button("π Process URL", variant="primary")
# Direct Text Tab
with gr.Tab("βοΈ Direct Text"):
direct_text_input = gr.Textbox(
label="Enter or Paste Text",
placeholder="Paste your text here...",
lines=10
)
process_text_btn = gr.Button("π Process Text", variant="primary")
# Output Section
gr.Markdown("### π Extracted Content")
with gr.Row():
with gr.Column(scale=1):
doc_info_output = gr.JSON(
label="Document Info",
visible=True
)
with gr.Column(scale=2):
extracted_text_output = gr.Textbox(
label="Extracted Text",
lines=15,
max_lines=20,
show_copy_button=True
)
# AI Analysis Section
gr.Markdown("### π€ AI Analysis")
analyze_btn = gr.Button("π§ Analyze with AI", variant="secondary")
analysis_output = gr.Textbox(
label="AI Analysis",
lines=10,
show_copy_button=True
)
# Processing functions
def process_file_wrapper(file_path):
if not file_path:
return None, "Please upload a file first."
result, error = document_processor.process_file(file_path)
if error:
return {"error": error}, ""
if result:
info = {
"filename": result['filename'],
"file_type": result['file_type'],
"upload_date": result['upload_date'],
"source": result['source_type'],
"content_length": len(result['content'])
}
return info, result['content']
return {"error": "Failed to process file"}, ""
def process_url_wrapper(url):
if not url:
return None, "Please enter a URL first."
result, error = document_processor.process_url(url)
if error:
return {"error": error}, ""
if result:
info = {
"source": result['source_url'],
"filename": result['filename'],
"file_type": result['file_type'],
"upload_date": result['upload_date'],
"content_length": len(result['content'])
}
return info, result['content']
return {"error": "Failed to process URL"}, ""
def process_text_wrapper(text):
if not text:
return None, "Please enter some text first."
result, error = document_processor.process_text(text)
if error:
return {"error": error}, ""
if result:
info = {
"source": "Direct Input",
"upload_date": result['upload_date'],
"content_length": len(result['content'])
}
return info, result['content']
return {"error": "Failed to process text"}, ""
async def analyze_with_ai(extracted_text):
if not extracted_text:
return "No text to analyze. Please process a document first."
# Use the ultimate brain to analyze
query = f"Please analyze this document and provide key insights:\n\n{extracted_text[:3000]}"
result = await ultimate_brain.process_legal_query(
query=query,
mode="document_validation",
ai_provider="huggingface",
use_reasoning_protocols=True
)
# Get AI response
token = None
client = InferenceClient(token=token, model="meta-llama/Llama-3.3-70B-Instruct")
messages = [
{"role": "system", "content": result['enhanced_query']},
{"role": "user", "content": query}
]
response = ""
try:
for chunk in client.chat_completion(messages, max_tokens=1024, stream=True, temperature=0.7, top_p=0.95):
if chunk.choices and chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
except Exception as e:
response = f"Error: {str(e)}"
return response
# Connect buttons
process_file_btn.click(
fn=process_file_wrapper,
inputs=[file_input],
outputs=[doc_info_output, extracted_text_output]
)
process_url_btn.click(
fn=process_url_wrapper,
inputs=[url_input],
outputs=[doc_info_output, extracted_text_output]
)
process_text_btn.click(
fn=process_text_wrapper,
inputs=[direct_text_input],
outputs=[doc_info_output, extracted_text_output]
)
analyze_btn.click(
fn=analyze_with_ai,
inputs=[extracted_text_output],
outputs=[analysis_output]
)
# Analytics Tab
with gr.Tab("π Analytics"):
gr.Markdown("""
## Analytics & Performance Dashboard
View real-time analytics and performance metrics for the Ultimate Brain.
""")
with gr.Row():
analytics_btn = gr.Button("π Refresh Analytics", variant="primary")
clear_cache_btn = gr.Button("ποΈ Clear Cache", variant="secondary")
analytics_output = gr.JSON(label="Analytics Data")
performance_output = gr.JSON(label="Performance Metrics")
cache_stats_output = gr.JSON(label="Cache Statistics")
def get_analytics():
return analytics_tracker.get_analytics()
def get_performance():
return performance_monitor.get_metrics()
def get_cache_stats():
return performance_cache.get_stats()
def clear_cache_action():
performance_cache.clear()
return {"status": "Cache cleared successfully"}
analytics_btn.click(
fn=lambda: (get_analytics(), get_performance(), get_cache_stats()),
outputs=[analytics_output, performance_output, cache_stats_output]
)
clear_cache_btn.click(
fn=clear_cache_action,
outputs=[cache_stats_output]
)
# Reasoning Brain Tab
with gr.Tab("π§ Reasoning Brain"):
gr.Markdown("""
## Unified AI Reasoning Brain
### π Protocol Categories:
#### Core Reasoning (Protocols 1-50)
- Chain-of-Thought, Self-Consistency, Tree-of-Thoughts
- ReAct, Reflexion, RAG, and more
#### Quantum-Specific (Protocols 51-100)
- Quantum Job Orchestration, VQE, QAOA
- Circuit Transpilation, Error Mitigation
#### Multi-Agent (Protocols 73-100)
- Multi-Agent Coordination
- Contract Net Protocol
""")
# About Tab
with gr.Tab("βΉοΈ About"):
gr.Markdown("""
## About ProVerBs Ultimate Legal AI Brain
### π Revolutionary Features:
- **100+ Reasoning Protocols** - Most advanced reasoning system
- **6 AI Models** - Choose the best for your needs
- **7 Legal Modes** - Specialized for different legal tasks
- **Voice Cloning** - Professional Supertonic integration
- **Audio Processing** - Complete recording and playback controls
### ποΈ Voice Cloning Features:
- Record voice samples with full controls
- Clone any voice with text-to-speech
- Professional audio processing
- Export voice profiles
- Play, Pause, Record, Rewind, Stop controls
### π Resources:
- **Main Space**: https://huggingface.co/spaces/Solomon7890/ProVerbS_LaW_mAiN_PAgE
- **Supertonic**: https://github.com/supertone-inc/supertonic
- **Models**: https://huggingface.co/Supertone/supertonic
### β οΈ Disclaimer:
This platform provides general legal information only. Consult with a licensed attorney for specific legal matters.
---
**Version 3.0.0 + Voice Cloning** | Built by Solomon7890
""")
# Footer
gr.Markdown("""
---
<div style="text-align: center; padding: 20px;">
<p><strong>βοΈ ProVerBs Ultimate Legal AI Brain v3.0 + Voice Cloning</strong></p>
<p>Powered by Pro'VerBsβ’ & ADAPPT-Iβ’ | 100+ Protocols | 6 AI Models | Voice Cloning</p>
<p style="font-size: 0.85rem; color: #666;">
Β© 2025 Solomon 8888 | Built with β€οΈ for legal professionals worldwide
</p>
</div>
""")
# Use the new demo with voice cloning
demo = demo_with_voice
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|