Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,6 +12,9 @@ logger = logging.getLogger(__name__)
|
|
| 12 |
model = ViTForImageClassification.from_pretrained("prithivMLmods/Deep-Fake-Detector-Model")
|
| 13 |
processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deep-Fake-Detector-Model")
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
def detect(image, confidence_threshold=0.5):
|
| 16 |
"""Detect deepfake content using prithivMLmods/Deep-Fake-Detector-Model"""
|
| 17 |
if image is None:
|
|
@@ -34,18 +37,26 @@ def detect(image, confidence_threshold=0.5):
|
|
| 34 |
probabilities = torch.softmax(logits, dim=1)[0]
|
| 35 |
|
| 36 |
# Get confidence scores
|
| 37 |
-
confidence_real = probabilities[0].item() * 100
|
| 38 |
-
confidence_fake = probabilities[1].item() * 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
confidence_score = max(confidence_real, confidence_fake)
|
| 43 |
|
| 44 |
-
# Log
|
| 45 |
-
logger.info(f"
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# Prepare output
|
| 48 |
-
overall = f"{confidence_score:.1f}% Confidence ({
|
| 49 |
aigen = f"{confidence_fake:.1f}% (AI-Generated Content Likelihood)"
|
| 50 |
deepfake = f"{confidence_fake:.1f}% (Face Manipulation Likelihood)"
|
| 51 |
|
|
@@ -98,7 +109,7 @@ MARKDOWN0 = """
|
|
| 98 |
<h1>DeepFake Detection System</h1>
|
| 99 |
<p>Advanced AI-powered analysis for identifying manipulated media<br>
|
| 100 |
Powered by prithivMLmods/Deep-Fake-Detector-Model (Updated Jan 2025)<br>
|
| 101 |
-
|
| 102 |
</div>
|
| 103 |
"""
|
| 104 |
|
|
|
|
| 12 |
model = ViTForImageClassification.from_pretrained("prithivMLmods/Deep-Fake-Detector-Model")
|
| 13 |
processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deep-Fake-Detector-Model")
|
| 14 |
|
| 15 |
+
# Log model configuration to verify label mapping
|
| 16 |
+
logger.info(f"Model label mapping: {model.config.id2label}")
|
| 17 |
+
|
| 18 |
def detect(image, confidence_threshold=0.5):
|
| 19 |
"""Detect deepfake content using prithivMLmods/Deep-Fake-Detector-Model"""
|
| 20 |
if image is None:
|
|
|
|
| 37 |
probabilities = torch.softmax(logits, dim=1)[0]
|
| 38 |
|
| 39 |
# Get confidence scores
|
| 40 |
+
confidence_real = probabilities[0].item() * 100 # Assuming 0 is Real
|
| 41 |
+
confidence_fake = probabilities[1].item() * 100 # Assuming 1 is Fake
|
| 42 |
+
|
| 43 |
+
# Verify label mapping from model config
|
| 44 |
+
id2label = model.config.id2label
|
| 45 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
| 46 |
+
predicted_label = id2label[predicted_class]
|
| 47 |
|
| 48 |
+
# Adjust prediction based on threshold and label
|
| 49 |
+
threshold_predicted = "Fake" if confidence_fake / 100 >= confidence_threshold else "Real"
|
| 50 |
confidence_score = max(confidence_real, confidence_fake)
|
| 51 |
|
| 52 |
+
# Log detailed output
|
| 53 |
+
logger.info(f"Logits: {logits.tolist()}")
|
| 54 |
+
logger.info(f"Probabilities - Real: {confidence_real:.1f}%, Fake: {confidence_fake:.1f}%")
|
| 55 |
+
logger.info(f"Predicted Class: {predicted_class}, Label: {predicted_label}")
|
| 56 |
+
logger.info(f"Threshold ({confidence_threshold}): {threshold_predicted}")
|
| 57 |
|
| 58 |
# Prepare output
|
| 59 |
+
overall = f"{confidence_score:.1f}% Confidence ({threshold_predicted})"
|
| 60 |
aigen = f"{confidence_fake:.1f}% (AI-Generated Content Likelihood)"
|
| 61 |
deepfake = f"{confidence_fake:.1f}% (Face Manipulation Likelihood)"
|
| 62 |
|
|
|
|
| 109 |
<h1>DeepFake Detection System</h1>
|
| 110 |
<p>Advanced AI-powered analysis for identifying manipulated media<br>
|
| 111 |
Powered by prithivMLmods/Deep-Fake-Detector-Model (Updated Jan 2025)<br>
|
| 112 |
+
Adjust threshold to tune sensitivity; check logs for detailed output</p>
|
| 113 |
</div>
|
| 114 |
"""
|
| 115 |
|