File size: 3,094 Bytes
39bf5a3
 
b718109
39bf5a3
 
 
b718109
 
39bf5a3
 
 
 
 
 
 
 
 
b718109
 
39bf5a3
 
 
 
 
 
 
 
 
 
b718109
 
 
 
 
 
39bf5a3
 
 
 
 
 
 
 
 
 
 
 
b718109
 
 
 
dbfa8f5
 
 
 
39bf5a3
 
b718109
 
 
 
421076d
b718109
421076d
b718109
421076d
b718109
421076d
b718109
 
39bf5a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b718109
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import gradio as gr
from huggingface_hub import InferenceClient
import random

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Initialize conversation state
conversation_state = {"ask_question": False, "last_message": ""}

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    global conversation_state

    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    # Check if the chatbot should pose a question based on the user's previous response
    if conversation_state["ask_question"]:
        conversation_state["ask_question"] = False
        question = pose_follow_up_question(conversation_state["last_message"])
        messages.append({"role": "assistant", "content": question})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token

        # Update conversation state with the last user message
        conversation_state["last_message"] = message.choices[0].delta.content

        # Check if the chatbot should ask a question based on the current response
        if "ask a question" in token.lower():
            conversation_state["ask_question"] = True

        yield response

def pose_follow_up_question(user_response):
    # Example follow-up questions based on user responses
    follow_up_questions = {
        "I believe scientists should prioritize ethical considerations in their research":
            "That's great! What do you think are some specific ethical considerations scientists should keep in mind?",
        "I'm not sure about the ethical implications of genetic engineering":
            "It's okay! Genetic engineering can be complicated. What aspects of it are you uncertain about?",
        "I think technology has the potential to both benefit and harm society":
            "You're absolutely right! How do you think society can balance the benefits and risks of emerging technologies?"
    }
    return follow_up_questions.get(user_response, "Could you tell me more about your thoughts on this topic?")

# Gradio interface definition
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()