Update app.py
Browse files
app.py
CHANGED
|
@@ -33,7 +33,7 @@ llm = ChatGroq(temperature=0.5, groq_api_key=GROQ_API_KEY, model_name="llama3-8b
|
|
| 33 |
# Download required NLTK resources
|
| 34 |
nltk.download("punkt")
|
| 35 |
|
| 36 |
-
#
|
| 37 |
tone_categories = {
|
| 38 |
"Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis", "concern"],
|
| 39 |
"Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust", "authoritarian"],
|
|
@@ -41,32 +41,92 @@ tone_categories = {
|
|
| 41 |
"Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change", "determination"],
|
| 42 |
"Informative": ["announcement", "event", "scheduled", "update", "details", "protest", "statement"],
|
| 43 |
"Positive": ["progress", "unity", "hope", "victory", "together", "solidarity", "uplifting"],
|
| 44 |
-
"Happy": ["joy", "celebration", "cheer", "success", "smile", "gratitude", "harmony"],
|
| 45 |
"Angry": ["rage", "injustice", "fury", "resentment", "outrage", "betrayal"],
|
| 46 |
"Fearful": ["threat", "danger", "terror", "panic", "risk", "warning"],
|
| 47 |
"Sarcastic": ["brilliant", "great job", "amazing", "what a surprise", "well done", "as expected"],
|
| 48 |
"Hopeful": ["optimism", "better future", "faith", "confidence", "looking forward"]
|
| 49 |
}
|
| 50 |
|
| 51 |
-
#
|
|
|
|
| 52 |
frame_categories = {
|
| 53 |
-
"Human Rights & Justice":
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
"
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
"
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
}
|
| 69 |
|
|
|
|
| 70 |
# Detect language
|
| 71 |
def detect_language(text):
|
| 72 |
try:
|
|
@@ -98,10 +158,6 @@ def extract_tone_fallback(text):
|
|
| 98 |
def extract_hashtags(text):
|
| 99 |
return re.findall(r"#\w+", text)
|
| 100 |
|
| 101 |
-
# Extract hashtags
|
| 102 |
-
def extract_hashtags(text):
|
| 103 |
-
return re.findall(r"#\w+", text)
|
| 104 |
-
|
| 105 |
# Categorize frames into Major, Significant, and Minor based on frequency
|
| 106 |
def categorize_frames(frame_list):
|
| 107 |
frame_counter = Counter(frame_list)
|
|
@@ -110,9 +166,9 @@ def categorize_frames(frame_list):
|
|
| 110 |
sorted_frames = sorted(frame_counter.items(), key=lambda x: x[1], reverse=True)
|
| 111 |
|
| 112 |
for i, (frame, count) in enumerate(sorted_frames):
|
| 113 |
-
if i == 0:
|
| 114 |
categorized_frames["Major Focus"].append(frame)
|
| 115 |
-
elif i < 3:
|
| 116 |
categorized_frames["Significant Focus"].append(frame)
|
| 117 |
else:
|
| 118 |
categorized_frames["Minor Mention"].append(frame)
|
|
@@ -120,27 +176,22 @@ def categorize_frames(frame_list):
|
|
| 120 |
return categorized_frames
|
| 121 |
|
| 122 |
# Extract frames using keyword matching and categorize
|
| 123 |
-
def extract_frames_fallback(text):
|
| 124 |
detected_frames = []
|
| 125 |
text_lower = text.lower()
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
|
|
|
| 132 |
return categorize_frames(detected_frames)
|
| 133 |
|
| 134 |
-
# Extract metadata from Excel file
|
| 135 |
-
def extract_metadata_from_excel(excel_file):
|
| 136 |
-
try:
|
| 137 |
-
df = pd.read_excel(excel_file)
|
| 138 |
-
extracted_data = df.to_dict(orient="records")
|
| 139 |
-
return extracted_data
|
| 140 |
-
except Exception as e:
|
| 141 |
-
logging.error(f"Error processing Excel file: {e}")
|
| 142 |
-
return []
|
| 143 |
-
|
| 144 |
# Extract captions from DOCX
|
| 145 |
def extract_captions_from_docx(docx_file):
|
| 146 |
doc = Document(docx_file)
|
|
@@ -155,51 +206,49 @@ def extract_captions_from_docx(docx_file):
|
|
| 155 |
captions[current_post].append(text)
|
| 156 |
return {post: " ".join(lines) for post, lines in captions.items() if lines}
|
| 157 |
|
| 158 |
-
#
|
| 159 |
-
def
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
post_data["Language"] = detect_language(caption_text)
|
| 168 |
-
post_data["Tone"] = extract_tone(caption_text)
|
| 169 |
-
post_data["Hashtags"] = extract_hashtags(caption_text)
|
| 170 |
-
post_data["Frames"] = extract_frames_fallback(caption_text)
|
| 171 |
-
|
| 172 |
-
merged_data.append(post_data)
|
| 173 |
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
-
# Create DOCX file
|
| 177 |
def create_docx_from_data(extracted_data):
|
| 178 |
doc = Document()
|
| 179 |
|
| 180 |
-
for
|
| 181 |
-
doc.add_heading(
|
| 182 |
|
| 183 |
-
|
| 184 |
-
"Date of Post", "Media Type", "Number of Pictures",
|
| 185 |
-
"Number of Audios", "Likes", "Comments", "Tagged Audience"
|
|
|
|
| 186 |
]
|
| 187 |
|
| 188 |
-
for
|
| 189 |
-
value = data.get(
|
| 190 |
-
doc.add_paragraph(f"**{field}:** {value}")
|
| 191 |
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
-
|
| 195 |
-
doc.add_paragraph(f"**Tone:** {', '.join(data.get('Tone', ['N/A']))}")
|
| 196 |
-
doc.add_paragraph(f"**Hashtags:** {', '.join(data.get('Hashtags', []))}")
|
| 197 |
-
|
| 198 |
-
frames = data.get("Frames", {})
|
| 199 |
-
doc.add_paragraph("**Frames:**")
|
| 200 |
-
for category, frame_list in frames.items():
|
| 201 |
-
if frame_list:
|
| 202 |
-
doc.add_paragraph(f" {category}: {', '.join(frame_list)}")
|
| 203 |
|
| 204 |
doc.add_paragraph("\n")
|
| 205 |
|
|
@@ -208,17 +257,49 @@ def create_docx_from_data(extracted_data):
|
|
| 208 |
# Streamlit app
|
| 209 |
st.title("AI-Powered Activism Message Analyzer")
|
| 210 |
|
|
|
|
|
|
|
|
|
|
| 211 |
uploaded_docx = st.file_uploader("Upload a DOCX file", type=["docx"])
|
| 212 |
uploaded_excel = st.file_uploader("Upload an Excel file", type=["xlsx"])
|
| 213 |
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
excel_metadata = extract_metadata_from_excel(uploaded_excel)
|
| 216 |
-
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
|
|
|
|
|
|
| 221 |
docx_io = io.BytesIO()
|
| 222 |
docx_output.save(docx_io)
|
| 223 |
docx_io.seek(0)
|
| 224 |
st.download_button("Download Merged Analysis as DOCX", data=docx_io, file_name="merged_analysis.docx")
|
|
|
|
|
|
| 33 |
# Download required NLTK resources
|
| 34 |
nltk.download("punkt")
|
| 35 |
|
| 36 |
+
# Tone categories for fallback method
|
| 37 |
tone_categories = {
|
| 38 |
"Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis", "concern"],
|
| 39 |
"Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust", "authoritarian"],
|
|
|
|
| 41 |
"Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change", "determination"],
|
| 42 |
"Informative": ["announcement", "event", "scheduled", "update", "details", "protest", "statement"],
|
| 43 |
"Positive": ["progress", "unity", "hope", "victory", "together", "solidarity", "uplifting"],
|
|
|
|
| 44 |
"Angry": ["rage", "injustice", "fury", "resentment", "outrage", "betrayal"],
|
| 45 |
"Fearful": ["threat", "danger", "terror", "panic", "risk", "warning"],
|
| 46 |
"Sarcastic": ["brilliant", "great job", "amazing", "what a surprise", "well done", "as expected"],
|
| 47 |
"Hopeful": ["optimism", "better future", "faith", "confidence", "looking forward"]
|
| 48 |
}
|
| 49 |
|
| 50 |
+
# Frame categories for fallback method
|
| 51 |
+
|
| 52 |
frame_categories = {
|
| 53 |
+
"Human Rights & Justice": {
|
| 54 |
+
"Legal Rights & Reforms": ["law", "justice", "legal", "reforms", "legislation"],
|
| 55 |
+
"Humanitarian Issues": ["humanitarian", "aid", "refugees", "asylum", "crisis response"],
|
| 56 |
+
"Civil Liberties": ["freedom", "expression", "privacy", "rights violations"]
|
| 57 |
+
},
|
| 58 |
+
"Political & State Accountability": {
|
| 59 |
+
"Corruption & Governance": ["corruption", "government", "policy", "accountability", "transparency"],
|
| 60 |
+
"Political Oppression": ["authoritarianism", "censorship", "state control", "dissent", "crackdown"],
|
| 61 |
+
"Elections & Political Representation": ["voting", "elections", "political participation", "democracy"]
|
| 62 |
+
},
|
| 63 |
+
"Gender & Patriarchy": {
|
| 64 |
+
"Gender-Based Violence": ["violence", "domestic abuse", "sexual harassment", "femicide"],
|
| 65 |
+
"Women's Rights & Equality": ["gender equality", "feminism", "reproductive rights", "patriarchy"],
|
| 66 |
+
"LGBTQ+ Rights": ["queer rights", "LGBTQ+", "gender identity", "trans rights", "homophobia"]
|
| 67 |
+
},
|
| 68 |
+
"Religious Freedom & Persecution": {
|
| 69 |
+
"Religious Discrimination": ["persecution", "intolerance", "sectarianism", "faith-based violence"],
|
| 70 |
+
"Religious Minorities' Rights": ["minorities", "blasphemy laws", "religious freedom", "forced conversion"]
|
| 71 |
+
},
|
| 72 |
+
"Grassroots Mobilization": {
|
| 73 |
+
"Community Activism": ["activism", "grassroots", "volunteering", "local organizing"],
|
| 74 |
+
"Protests & Demonstrations": ["march", "strike", "rally", "sit-in", "boycott"],
|
| 75 |
+
"Coalition Building": ["solidarity", "collaboration", "alliances", "mutual aid"]
|
| 76 |
+
},
|
| 77 |
+
"Environmental Crisis & Activism": {
|
| 78 |
+
"Climate Change Awareness": ["climate crisis", "global warming", "carbon emissions", "fossil fuels"],
|
| 79 |
+
"Conservation & Sustainability": ["deforestation", "wildlife protection", "biodiversity"],
|
| 80 |
+
"Environmental Justice": ["pollution", "water crisis", "land rights", "indigenous rights"]
|
| 81 |
+
},
|
| 82 |
+
"Anti-Extremism & Anti-Violence": {
|
| 83 |
+
"Hate Speech & Radicalization": ["hate speech", "extremism", "online radicalization", "propaganda"],
|
| 84 |
+
"Mob & Sectarian Violence": ["mob attack", "lynching", "sectarian violence", "hate crimes"],
|
| 85 |
+
"Counterterrorism & De-Radicalization": ["terrorism", "prevention", "peacebuilding", "rehabilitation"]
|
| 86 |
+
},
|
| 87 |
+
"Social Inequality & Economic Disparities": {
|
| 88 |
+
"Class Privilege & Labor Rights": ["classism", "labor rights", "unions", "wage gap"],
|
| 89 |
+
"Poverty & Economic Justice": ["poverty", "inequality", "economic disparity", "wealth gap"],
|
| 90 |
+
"Housing & Healthcare": ["housing crisis", "healthcare access", "social safety nets"]
|
| 91 |
+
},
|
| 92 |
+
"Activism & Advocacy": {
|
| 93 |
+
"Policy Advocacy & Legal Reforms": ["campaign", "policy change", "legal advocacy"],
|
| 94 |
+
"Social Media Activism": ["hashtags", "digital activism", "awareness campaign"],
|
| 95 |
+
"Freedom of Expression & Press": ["press freedom", "censorship", "media rights"]
|
| 96 |
+
},
|
| 97 |
+
"Systemic Oppression": {
|
| 98 |
+
"Marginalized Communities": ["minorities", "exclusion", "systemic discrimination"],
|
| 99 |
+
"Racial & Ethnic Discrimination": ["racism", "xenophobia", "ethnic cleansing", "casteism"],
|
| 100 |
+
"Institutional Bias": ["institutional racism", "structural oppression", "biased laws"]
|
| 101 |
+
},
|
| 102 |
+
"Intersectionality": {
|
| 103 |
+
"Multiple Oppressions": ["overlapping struggles", "intersecting identities", "double discrimination"],
|
| 104 |
+
"Women & Marginalized Identities": ["feminism", "queer feminism", "minority women"],
|
| 105 |
+
"Global Solidarity Movements": ["transnational activism", "cross-movement solidarity"]
|
| 106 |
+
},
|
| 107 |
+
"Call to Action": {
|
| 108 |
+
"Petitions & Direct Action": ["sign petition", "protest", "boycott"],
|
| 109 |
+
"Fundraising & Support": ["donate", "crowdfunding", "aid support"],
|
| 110 |
+
"Policy & Legislative Action": ["policy change", "demand action", "write to lawmakers"]
|
| 111 |
+
},
|
| 112 |
+
"Empowerment & Resistance": {
|
| 113 |
+
"Grassroots Organizing": ["community empowerment", "leadership training"],
|
| 114 |
+
"Revolutionary Movements": ["resistance", "revolt", "revolutionary change"],
|
| 115 |
+
"Inspiration & Motivational Messaging": ["hope", "courage", "overcoming struggles"]
|
| 116 |
+
},
|
| 117 |
+
"Climate Justice": {
|
| 118 |
+
"Indigenous Environmental Activism": ["land rights", "indigenous climate leadership"],
|
| 119 |
+
"Corporate Accountability": ["big oil", "corporate greed", "environmental negligence"],
|
| 120 |
+
"Sustainable Development": ["eco-friendly", "renewable energy", "circular economy"]
|
| 121 |
+
},
|
| 122 |
+
"Human Rights Advocacy": {
|
| 123 |
+
"Criminal Justice Reform": ["police brutality", "wrongful convictions", "prison reform"],
|
| 124 |
+
"Workplace Discrimination & Labor Rights": ["workplace bias", "equal pay", "unions"],
|
| 125 |
+
"International Human Rights": ["humanitarian law", "UN declarations", "international treaties"]
|
| 126 |
+
}
|
| 127 |
}
|
| 128 |
|
| 129 |
+
|
| 130 |
# Detect language
|
| 131 |
def detect_language(text):
|
| 132 |
try:
|
|
|
|
| 158 |
def extract_hashtags(text):
|
| 159 |
return re.findall(r"#\w+", text)
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
# Categorize frames into Major, Significant, and Minor based on frequency
|
| 162 |
def categorize_frames(frame_list):
|
| 163 |
frame_counter = Counter(frame_list)
|
|
|
|
| 166 |
sorted_frames = sorted(frame_counter.items(), key=lambda x: x[1], reverse=True)
|
| 167 |
|
| 168 |
for i, (frame, count) in enumerate(sorted_frames):
|
| 169 |
+
if i == 0: # Highest frequency frame
|
| 170 |
categorized_frames["Major Focus"].append(frame)
|
| 171 |
+
elif i < 3: # Top 3 most mentioned frames
|
| 172 |
categorized_frames["Significant Focus"].append(frame)
|
| 173 |
else:
|
| 174 |
categorized_frames["Minor Mention"].append(frame)
|
|
|
|
| 176 |
return categorized_frames
|
| 177 |
|
| 178 |
# Extract frames using keyword matching and categorize
|
| 179 |
+
def extract_frames_fallback(text, frame_categories):
|
| 180 |
detected_frames = []
|
| 181 |
text_lower = text.lower()
|
| 182 |
|
| 183 |
+
# Iterate through the activism topics to match keywords
|
| 184 |
+
for main_category, subcategories in frame_categories.items():
|
| 185 |
+
for subcategory, keywords in subcategories.items():
|
| 186 |
+
# Check how many keywords from the subcategory are present in the text
|
| 187 |
+
keyword_count = sum(1 for word in keywords if word in text_lower)
|
| 188 |
+
if keyword_count > 0:
|
| 189 |
+
# Append a tuple with main category and subcategory
|
| 190 |
+
detected_frames.append((main_category, subcategory))
|
| 191 |
|
| 192 |
+
# Categorize detected frames based on their frequency
|
| 193 |
return categorize_frames(detected_frames)
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
# Extract captions from DOCX
|
| 196 |
def extract_captions_from_docx(docx_file):
|
| 197 |
doc = Document(docx_file)
|
|
|
|
| 206 |
captions[current_post].append(text)
|
| 207 |
return {post: " ".join(lines) for post, lines in captions.items() if lines}
|
| 208 |
|
| 209 |
+
# Extract metadata from Excel file
|
| 210 |
+
def extract_metadata_from_excel(excel_file):
|
| 211 |
+
try:
|
| 212 |
+
df = pd.read_excel(excel_file)
|
| 213 |
+
extracted_data = df.to_dict(orient="records")
|
| 214 |
+
return extracted_data
|
| 215 |
+
except Exception as e:
|
| 216 |
+
logging.error(f"Error processing Excel file: {e}")
|
| 217 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
+
# Merge metadata with generated analysis
|
| 220 |
+
def merge_metadata_with_generated_data(generated_data, excel_metadata):
|
| 221 |
+
for post_data in excel_metadata:
|
| 222 |
+
post_number = f"Post {post_data.get('Post Number', len(generated_data) + 1)}"
|
| 223 |
+
if post_number in generated_data:
|
| 224 |
+
generated_data[post_number].update(post_data)
|
| 225 |
+
else:
|
| 226 |
+
generated_data[post_number] = post_data
|
| 227 |
+
return generated_data
|
| 228 |
|
| 229 |
+
# Create DOCX file matching the uploaded format
|
| 230 |
def create_docx_from_data(extracted_data):
|
| 231 |
doc = Document()
|
| 232 |
|
| 233 |
+
for post_number, data in extracted_data.items():
|
| 234 |
+
doc.add_heading(post_number, level=1)
|
| 235 |
|
| 236 |
+
ordered_keys = [
|
| 237 |
+
"Post Number", "Date of Post", "Media Type", "Number of Pictures",
|
| 238 |
+
"Number of Videos", "Number of Audios", "Likes", "Comments", "Tagged Audience",
|
| 239 |
+
"Full Caption", "Language", "Tone", "Hashtags", "Frames"
|
| 240 |
]
|
| 241 |
|
| 242 |
+
for key in ordered_keys:
|
| 243 |
+
value = data.get(key, "N/A")
|
|
|
|
| 244 |
|
| 245 |
+
if key in ["Tone", "Hashtags"]:
|
| 246 |
+
value = ", ".join(value) if isinstance(value, list) else value
|
| 247 |
+
elif key == "Frames" and isinstance(value, dict):
|
| 248 |
+
frame_text = "\n".join([f" {category}: {', '.join(frames)}" for category, frames in value.items() if frames])
|
| 249 |
+
value = f"\n{frame_text}" if frame_text else "N/A"
|
| 250 |
|
| 251 |
+
doc.add_paragraph(f"**{key}:** {value}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
doc.add_paragraph("\n")
|
| 254 |
|
|
|
|
| 257 |
# Streamlit app
|
| 258 |
st.title("AI-Powered Activism Message Analyzer")
|
| 259 |
|
| 260 |
+
st.write("Enter text or upload a DOCX/Excel file for analysis:")
|
| 261 |
+
|
| 262 |
+
input_text = st.text_area("Input Text", height=200)
|
| 263 |
uploaded_docx = st.file_uploader("Upload a DOCX file", type=["docx"])
|
| 264 |
uploaded_excel = st.file_uploader("Upload an Excel file", type=["xlsx"])
|
| 265 |
|
| 266 |
+
output_data = {}
|
| 267 |
+
|
| 268 |
+
if input_text:
|
| 269 |
+
output_data["Manual Input"] = {
|
| 270 |
+
"Full Caption": input_text,
|
| 271 |
+
"Language": detect_language(input_text),
|
| 272 |
+
"Tone": extract_tone(input_text),
|
| 273 |
+
"Hashtags": extract_hashtags(input_text),
|
| 274 |
+
"Frames": extract_frames_fallback(input_text),
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
if uploaded_docx:
|
| 278 |
+
captions = extract_captions_from_docx(uploaded_docx)
|
| 279 |
+
for caption, text in captions.items():
|
| 280 |
+
output_data[caption] = {
|
| 281 |
+
"Full Caption": text,
|
| 282 |
+
"Language": detect_language(text),
|
| 283 |
+
"Tone": extract_tone(text),
|
| 284 |
+
"Hashtags": extract_hashtags(text),
|
| 285 |
+
"Frames": extract_frames_fallback(text),
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
if uploaded_excel:
|
| 289 |
excel_metadata = extract_metadata_from_excel(uploaded_excel)
|
| 290 |
+
output_data = merge_metadata_with_generated_data(output_data, excel_metadata)
|
| 291 |
|
| 292 |
+
# Display results in collapsible sections for better UI
|
| 293 |
+
if output_data:
|
| 294 |
+
for post_number, data in output_data.items():
|
| 295 |
+
with st.expander(post_number):
|
| 296 |
+
for key, value in data.items():
|
| 297 |
+
st.write(f"**{key}:** {value}")
|
| 298 |
|
| 299 |
+
if output_data:
|
| 300 |
+
docx_output = create_docx_from_data(output_data)
|
| 301 |
docx_io = io.BytesIO()
|
| 302 |
docx_output.save(docx_io)
|
| 303 |
docx_io.seek(0)
|
| 304 |
st.download_button("Download Merged Analysis as DOCX", data=docx_io, file_name="merged_analysis.docx")
|
| 305 |
+
|