Spaces:
Running
Running
Update speechscore.py
Browse files- speechscore.py +11 -8
speechscore.py
CHANGED
|
@@ -20,7 +20,7 @@ from scores.cbak import CBAK
|
|
| 20 |
from scores.covl import COVL
|
| 21 |
from scores.mcd import MCD
|
| 22 |
|
| 23 |
-
def compute_mean_results(*results):
|
| 24 |
mean_result = {}
|
| 25 |
|
| 26 |
# Use the first dictionary as a reference for keys
|
|
@@ -28,10 +28,13 @@ def compute_mean_results(*results):
|
|
| 28 |
# If the value is a nested dictionary, recurse
|
| 29 |
if isinstance(results[0][key], dict):
|
| 30 |
nested_results = [d[key] for d in results]
|
| 31 |
-
mean_result[key] = compute_mean_results(*nested_results)
|
| 32 |
# Otherwise, compute the mean of the values
|
| 33 |
else:
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
return mean_result
|
| 37 |
|
|
@@ -46,7 +49,7 @@ class ScoresList:
|
|
| 46 |
def __str__(self):
|
| 47 |
return 'Scores: ' + ' '.join([x.name for x in self.scores])
|
| 48 |
|
| 49 |
-
def __call__(self, test_path, reference_path, window=None, score_rate=None, return_mean=False):
|
| 50 |
"""
|
| 51 |
window: float
|
| 52 |
the window length in seconds to use for scoring the files.
|
|
@@ -68,7 +71,7 @@ class ScoresList:
|
|
| 68 |
data['rate'] = score_rate
|
| 69 |
|
| 70 |
for score in self.scores:
|
| 71 |
-
result_score = score.scoring(data, window, score_rate)
|
| 72 |
results[score.name] = result_score
|
| 73 |
else:
|
| 74 |
if os.path.isdir(test_path):
|
|
@@ -81,18 +84,18 @@ class ScoresList:
|
|
| 81 |
else:
|
| 82 |
data = self.audio_reader(test_path+'/'+audio_id, None)
|
| 83 |
for score in self.scores:
|
| 84 |
-
result_score = score.scoring(data, window, score_rate)
|
| 85 |
results_id[score.name] = result_score
|
| 86 |
results[audio_id] = results_id
|
| 87 |
|
| 88 |
elif os.path.isfile(test_path):
|
| 89 |
data = self.audio_reader(test_path, reference_path)
|
| 90 |
for score in self.scores:
|
| 91 |
-
result_score = score.scoring(data, window, score_rate)
|
| 92 |
results[score.name] = result_score
|
| 93 |
|
| 94 |
if return_mean:
|
| 95 |
-
mean_result = compute_mean_results(*results.values())
|
| 96 |
results['Mean_Score'] = mean_result
|
| 97 |
|
| 98 |
return results
|
|
|
|
| 20 |
from scores.covl import COVL
|
| 21 |
from scores.mcd import MCD
|
| 22 |
|
| 23 |
+
def compute_mean_results(*results, round_digits=None):
|
| 24 |
mean_result = {}
|
| 25 |
|
| 26 |
# Use the first dictionary as a reference for keys
|
|
|
|
| 28 |
# If the value is a nested dictionary, recurse
|
| 29 |
if isinstance(results[0][key], dict):
|
| 30 |
nested_results = [d[key] for d in results]
|
| 31 |
+
mean_result[key] = compute_mean_results(*nested_results, round_digits=round_digits)
|
| 32 |
# Otherwise, compute the mean of the values
|
| 33 |
else:
|
| 34 |
+
if round_digits is not None:
|
| 35 |
+
mean_result[key] = round(sum(d[key] for d in results) / len(results), round_digits)
|
| 36 |
+
else:
|
| 37 |
+
mean_result[key] = sum(d[key] for d in results) / len(results)
|
| 38 |
|
| 39 |
return mean_result
|
| 40 |
|
|
|
|
| 49 |
def __str__(self):
|
| 50 |
return 'Scores: ' + ' '.join([x.name for x in self.scores])
|
| 51 |
|
| 52 |
+
def __call__(self, test_path, reference_path, window=None, score_rate=None, return_mean=False, round_digits=None):
|
| 53 |
"""
|
| 54 |
window: float
|
| 55 |
the window length in seconds to use for scoring the files.
|
|
|
|
| 71 |
data['rate'] = score_rate
|
| 72 |
|
| 73 |
for score in self.scores:
|
| 74 |
+
result_score = score.scoring(data, window, score_rate, round_digits)
|
| 75 |
results[score.name] = result_score
|
| 76 |
else:
|
| 77 |
if os.path.isdir(test_path):
|
|
|
|
| 84 |
else:
|
| 85 |
data = self.audio_reader(test_path+'/'+audio_id, None)
|
| 86 |
for score in self.scores:
|
| 87 |
+
result_score = score.scoring(data, window, score_rate, round_digits)
|
| 88 |
results_id[score.name] = result_score
|
| 89 |
results[audio_id] = results_id
|
| 90 |
|
| 91 |
elif os.path.isfile(test_path):
|
| 92 |
data = self.audio_reader(test_path, reference_path)
|
| 93 |
for score in self.scores:
|
| 94 |
+
result_score = score.scoring(data, window, score_rate, round_digits)
|
| 95 |
results[score.name] = result_score
|
| 96 |
|
| 97 |
if return_mean:
|
| 98 |
+
mean_result = compute_mean_results(*results.values(), round_digits=round_digits)
|
| 99 |
results['Mean_Score'] = mean_result
|
| 100 |
|
| 101 |
return results
|