video
Browse files- app.py +210 -9
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import tempfile
|
| 3 |
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
import requests
|
|
@@ -9,6 +10,9 @@ from dotenv import load_dotenv
|
|
| 9 |
from huggingface_hub import InferenceClient
|
| 10 |
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
load_dotenv()
|
| 13 |
|
| 14 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -39,14 +43,50 @@ def download_image_locally(image_url: str, local_path: str = "downloaded_image.p
|
|
| 39 |
return local_path
|
| 40 |
|
| 41 |
|
| 42 |
-
def login(oauth_token: gr.OAuthToken | None):
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
if oauth_token and oauth_token.token:
|
| 45 |
-
print("Received OAuth token, logging in...")
|
| 46 |
TOKEN = oauth_token.token
|
| 47 |
else:
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
def generate(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024, num_inference_steps: int = 25):
|
|
@@ -78,6 +118,79 @@ def generate(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024,
|
|
| 78 |
return image, seed
|
| 79 |
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
examples = [
|
| 82 |
"a tiny astronaut hatching from an egg on the moon",
|
| 83 |
"a cat holding a sign that says hello world",
|
|
@@ -98,8 +211,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 98 |
gr.Markdown(
|
| 99 |
"This Space showcases the black‑forest‑labs/FLUX.1‑dev model, served by the nebius API. Sign in with your Hugging Face account to use this API."
|
| 100 |
)
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
with gr.Column(elem_id="col-container"):
|
| 104 |
gr.Markdown(
|
| 105 |
"""# FLUX.1 [schnell] with fal‑ai through HF Inference Providers ⚡\nLearn more about HF Inference Providers [here](https://huggingface.co/docs/inference-providers/index)"""
|
|
@@ -115,9 +234,9 @@ with gr.Blocks(css=css) as demo:
|
|
| 115 |
)
|
| 116 |
run_button = gr.Button("Run", scale=0)
|
| 117 |
|
| 118 |
-
result = gr.Image(label="
|
| 119 |
download_btn = gr.DownloadButton(
|
| 120 |
-
label="Download result",
|
| 121 |
visible=False,
|
| 122 |
value=None,
|
| 123 |
variant="primary",
|
|
@@ -164,12 +283,94 @@ with gr.Blocks(css=css) as demo:
|
|
| 164 |
cache_examples="lazy",
|
| 165 |
)
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
run_button.click(
|
| 168 |
fn=generate,
|
| 169 |
inputs=[prompt, seed_slider, width_slider, height_slider, steps_slider],
|
| 170 |
outputs=[result, seed_number],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
)
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
with gr.Accordion("Download Image from URL", open=False):
|
| 174 |
image_url_input = gr.Text(label="Image URL", placeholder="Enter image URL (e.g., http://.../image.png)")
|
| 175 |
filename_input = gr.Text(
|
|
|
|
| 1 |
import os
|
| 2 |
import tempfile
|
| 3 |
|
| 4 |
+
import fal_client
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import requests
|
|
|
|
| 10 |
from huggingface_hub import InferenceClient
|
| 11 |
|
| 12 |
|
| 13 |
+
FAL_KEY = os.environ.get("FAL_KEY") # Load FAL_KEY
|
| 14 |
+
|
| 15 |
+
|
| 16 |
load_dotenv()
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 43 |
return local_path
|
| 44 |
|
| 45 |
|
| 46 |
+
def login(oauth_token: gr.OAuthToken | None, fal_key_from_ui: str | None):
|
| 47 |
+
"""
|
| 48 |
+
Login to Hugging Face and FAL.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
oauth_token (gr.OAuthToken | None): The OAuth token from Hugging Face.
|
| 52 |
+
fal_key_from_ui (str | None): The FAL key from the UI.
|
| 53 |
+
"""
|
| 54 |
+
global TOKEN, FAL_KEY
|
| 55 |
+
|
| 56 |
if oauth_token and oauth_token.token:
|
| 57 |
+
print("Received OAuth token, logging in for Hugging Face...")
|
| 58 |
TOKEN = oauth_token.token
|
| 59 |
else:
|
| 60 |
+
env_hf_token = os.environ.get("HF_TOKEN")
|
| 61 |
+
if env_hf_token:
|
| 62 |
+
TOKEN = env_hf_token
|
| 63 |
+
print("Using environment variable HF_TOKEN for Hugging Face.")
|
| 64 |
+
else:
|
| 65 |
+
print("No Hugging Face OAuth token received and HF_TOKEN environment variable not set.")
|
| 66 |
+
|
| 67 |
+
if fal_key_from_ui and fal_key_from_ui.strip():
|
| 68 |
+
FAL_KEY = fal_key_from_ui.strip()
|
| 69 |
+
elif os.environ.get("FAL_KEY"):
|
| 70 |
+
if FAL_KEY == os.environ.get("FAL_KEY"):
|
| 71 |
+
print("Using FAL_KEY from environment variable.")
|
| 72 |
+
else:
|
| 73 |
+
FAL_KEY = os.environ.get("FAL_KEY")
|
| 74 |
+
print("Using FAL_KEY from environment variable (UI input was blank).")
|
| 75 |
+
gr.Info("FAL_KEY has been set from environment variable.")
|
| 76 |
+
|
| 77 |
+
else:
|
| 78 |
+
print("FAL_KEY not provided in UI or environment.")
|
| 79 |
+
FAL_KEY = None
|
| 80 |
+
|
| 81 |
+
if not TOKEN:
|
| 82 |
+
gr.Warning("Hugging Face token not set. Image generation via HF Inference Providers might fail.")
|
| 83 |
+
else:
|
| 84 |
+
gr.Info("Hugging Face token is configured.")
|
| 85 |
+
|
| 86 |
+
if not FAL_KEY:
|
| 87 |
+
gr.Warning("FAL_KEY not set. Video generation will not work.")
|
| 88 |
+
else:
|
| 89 |
+
gr.Info("FAL_KEY is configured.")
|
| 90 |
|
| 91 |
|
| 92 |
def generate(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024, num_inference_steps: int = 25):
|
|
|
|
| 118 |
return image, seed
|
| 119 |
|
| 120 |
|
| 121 |
+
def generate_video_from_image(
|
| 122 |
+
image_filepath: str, # This will be the path to the image from gr.Image output
|
| 123 |
+
video_prompt: str,
|
| 124 |
+
duration: str, # "5" or "10"
|
| 125 |
+
aspect_ratio: str, # "16:9", "9:16", "1:1"
|
| 126 |
+
video_negative_prompt: str,
|
| 127 |
+
cfg_scale_video: float,
|
| 128 |
+
progress=gr.Progress(track_tqdm=True),
|
| 129 |
+
):
|
| 130 |
+
"""
|
| 131 |
+
Generates a video from an image using fal-ai/kling-video API.
|
| 132 |
+
"""
|
| 133 |
+
if not FAL_KEY:
|
| 134 |
+
gr.Error("FAL_KEY is not set. Cannot generate video.")
|
| 135 |
+
return None
|
| 136 |
+
if not image_filepath:
|
| 137 |
+
gr.Warning("No image provided to generate video from.")
|
| 138 |
+
return None
|
| 139 |
+
if not os.path.exists(image_filepath):
|
| 140 |
+
gr.Error(f"Image file not found at: {image_filepath}")
|
| 141 |
+
return None
|
| 142 |
+
|
| 143 |
+
print(f"Video generation started for image: {image_filepath}")
|
| 144 |
+
progress(0, desc="Preparing for video generation...")
|
| 145 |
+
|
| 146 |
+
try:
|
| 147 |
+
progress(0.1, desc="Uploading image...")
|
| 148 |
+
print("Uploading image to fal.ai storage...")
|
| 149 |
+
image_url = fal_client.upload_file(image_filepath)
|
| 150 |
+
print(f"Image uploaded, URL: {image_url}")
|
| 151 |
+
progress(0.3, desc="Image uploaded. Submitting video request...")
|
| 152 |
+
|
| 153 |
+
def on_queue_update(update):
|
| 154 |
+
if isinstance(update, fal_client.InProgress):
|
| 155 |
+
if update.logs:
|
| 156 |
+
for log in update.logs:
|
| 157 |
+
print(f"[fal-ai log] {log['message']}")
|
| 158 |
+
# Try to update progress description if logs are available
|
| 159 |
+
# progress(progress.current_progress_value, desc=f"Video processing: {log['message'][:50]}...")
|
| 160 |
+
|
| 161 |
+
print("Subscribing to fal-ai/kling-video/v2.1/master/image-to-video...")
|
| 162 |
+
api_result = fal_client.subscribe(
|
| 163 |
+
"fal-ai/kling-video/v2.1/master/image-to-video",
|
| 164 |
+
arguments={
|
| 165 |
+
"prompt": video_prompt,
|
| 166 |
+
"image_url": image_url,
|
| 167 |
+
"duration": duration,
|
| 168 |
+
"aspect_ratio": aspect_ratio,
|
| 169 |
+
"negative_prompt": video_negative_prompt,
|
| 170 |
+
"cfg_scale": cfg_scale_video,
|
| 171 |
+
},
|
| 172 |
+
with_logs=True, # Get logs
|
| 173 |
+
on_queue_update=on_queue_update, # Callback for logs
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
progress(0.9, desc="Video processing complete.")
|
| 177 |
+
video_output_url = api_result.get("video", {}).get("url")
|
| 178 |
+
|
| 179 |
+
if video_output_url:
|
| 180 |
+
print(f"Video generated successfully: {video_output_url}")
|
| 181 |
+
progress(1, desc="Video ready!")
|
| 182 |
+
return video_output_url
|
| 183 |
+
else:
|
| 184 |
+
print(f"Video generation failed or no URL in response. API Result: {api_result}")
|
| 185 |
+
gr.Error("Video generation failed or no video URL returned.")
|
| 186 |
+
return None
|
| 187 |
+
|
| 188 |
+
except Exception as e:
|
| 189 |
+
print(f"Error during video generation: {e}")
|
| 190 |
+
gr.Error(f"An error occurred: {str(e)}")
|
| 191 |
+
return None
|
| 192 |
+
|
| 193 |
+
|
| 194 |
examples = [
|
| 195 |
"a tiny astronaut hatching from an egg on the moon",
|
| 196 |
"a cat holding a sign that says hello world",
|
|
|
|
| 211 |
gr.Markdown(
|
| 212 |
"This Space showcases the black‑forest‑labs/FLUX.1‑dev model, served by the nebius API. Sign in with your Hugging Face account to use this API."
|
| 213 |
)
|
| 214 |
+
hf_login_button = gr.LoginButton("Sign in")
|
| 215 |
+
fal_key_input = gr.Textbox(
|
| 216 |
+
label="FAL_KEY",
|
| 217 |
+
placeholder="Enter your FAL API Key here",
|
| 218 |
+
type="password",
|
| 219 |
+
value=FAL_KEY if FAL_KEY else "", # Pre-fill if loaded from env
|
| 220 |
+
)
|
| 221 |
+
hf_login_button.click(fn=login, inputs=[hf_login_button, fal_key_input], outputs=None)
|
| 222 |
with gr.Column(elem_id="col-container"):
|
| 223 |
gr.Markdown(
|
| 224 |
"""# FLUX.1 [schnell] with fal‑ai through HF Inference Providers ⚡\nLearn more about HF Inference Providers [here](https://huggingface.co/docs/inference-providers/index)"""
|
|
|
|
| 234 |
)
|
| 235 |
run_button = gr.Button("Run", scale=0)
|
| 236 |
|
| 237 |
+
result = gr.Image(label="Generated Image", show_label=False, format="png", type="filepath")
|
| 238 |
download_btn = gr.DownloadButton(
|
| 239 |
+
label="Download result image",
|
| 240 |
visible=False,
|
| 241 |
value=None,
|
| 242 |
variant="primary",
|
|
|
|
| 283 |
cache_examples="lazy",
|
| 284 |
)
|
| 285 |
|
| 286 |
+
def update_image_outputs(image_pil, seed_val):
|
| 287 |
+
return {
|
| 288 |
+
result: image_pil,
|
| 289 |
+
seed_number: seed_val,
|
| 290 |
+
download_btn: gr.DownloadButton(value=image_pil, visible=True)
|
| 291 |
+
if image_pil
|
| 292 |
+
else gr.DownloadButton(visible=False),
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
run_button.click(
|
| 296 |
fn=generate,
|
| 297 |
inputs=[prompt, seed_slider, width_slider, height_slider, steps_slider],
|
| 298 |
outputs=[result, seed_number],
|
| 299 |
+
).then(
|
| 300 |
+
lambda img_path, vid_accordion, vid_btn: { # Make video section interactive
|
| 301 |
+
vid_accordion: gr.Accordion(open=True, interactive=True),
|
| 302 |
+
vid_btn: gr.Button(interactive=True),
|
| 303 |
+
},
|
| 304 |
+
inputs=[result],
|
| 305 |
+
outputs=[],
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
video_result_output = gr.Video(label="Generated Video", show_label=False)
|
| 309 |
+
|
| 310 |
+
with gr.Accordion("Video Generation from Image", open=False, interactive=False) as video_gen_accordion:
|
| 311 |
+
video_prompt_input = gr.Text(
|
| 312 |
+
label="Prompt for Video",
|
| 313 |
+
placeholder="Describe the animation or changes for the video (e.g., 'camera zooms out slowly')",
|
| 314 |
+
value="A gentle breeze rustles the leaves, subtle camera movement.", # Default prompt
|
| 315 |
+
)
|
| 316 |
+
with gr.Row():
|
| 317 |
+
video_duration_input = gr.Dropdown(label="Duration (seconds)", choices=["5", "10"], value="5")
|
| 318 |
+
video_aspect_ratio_input = gr.Dropdown(
|
| 319 |
+
label="Aspect Ratio",
|
| 320 |
+
choices=["16:9", "9:16", "1:1"],
|
| 321 |
+
value="16:9", # Default from API
|
| 322 |
+
)
|
| 323 |
+
video_negative_prompt_input = gr.Text(
|
| 324 |
+
label="Negative Prompt for Video",
|
| 325 |
+
value="blur, distort, low quality", # Default from API
|
| 326 |
+
)
|
| 327 |
+
video_cfg_scale_input = gr.Slider(
|
| 328 |
+
label="CFG Scale for Video",
|
| 329 |
+
minimum=0.0,
|
| 330 |
+
maximum=10.0,
|
| 331 |
+
value=0.5,
|
| 332 |
+
step=0.1, # Default from API (0.5 seems low, API docs mention it, let's check if it's a typo or specific to this model)
|
| 333 |
+
)
|
| 334 |
+
generate_video_btn = gr.Button("Generate Video", interactive=False)
|
| 335 |
+
|
| 336 |
+
# Update the run_button.click().then() to target these video components
|
| 337 |
+
# We need to define them first, so I'm moving the .then() part of run_button here.
|
| 338 |
+
# This is a bit tricky with Gradio's sequential definition. Let's re-organize slightly.
|
| 339 |
+
|
| 340 |
+
# The previous run_button.click had a .then() that needs video_gen_accordion and generate_video_btn
|
| 341 |
+
# We'll chain it properly after these are defined.
|
| 342 |
+
|
| 343 |
+
generate_video_btn.click(
|
| 344 |
+
fn=generate_video_from_image,
|
| 345 |
+
inputs=[
|
| 346 |
+
result, # This is the gr.Image component, its output (filepath) will be passed
|
| 347 |
+
video_prompt_input,
|
| 348 |
+
video_duration_input,
|
| 349 |
+
video_aspect_ratio_input,
|
| 350 |
+
video_negative_prompt_input,
|
| 351 |
+
video_cfg_scale_input,
|
| 352 |
+
],
|
| 353 |
+
outputs=[video_result_output],
|
| 354 |
)
|
| 355 |
|
| 356 |
+
# Now, correctly chain the .then() for the image generation button
|
| 357 |
+
run_button.click(
|
| 358 |
+
fn=generate,
|
| 359 |
+
inputs=[prompt, seed_slider, width_slider, height_slider, steps_slider],
|
| 360 |
+
outputs=[result, seed_number],
|
| 361 |
+
).then(
|
| 362 |
+
# This function will run after 'generate' and will update the UI
|
| 363 |
+
# It receives the outputs of 'generate' as its inputs.
|
| 364 |
+
# We use `result` (the gr.Image component's output which is a filepath)
|
| 365 |
+
# to enable the video section.
|
| 366 |
+
lambda image_filepath: { # image_filepath will be the path from the `result` gr.Image
|
| 367 |
+
video_gen_accordion: gr.Accordion(open=True, interactive=True if image_filepath else False),
|
| 368 |
+
generate_video_btn: gr.Button(interactive=True if image_filepath else False),
|
| 369 |
+
download_btn: gr.DownloadButton(value=image_filepath, visible=True if image_filepath else False),
|
| 370 |
+
},
|
| 371 |
+
inputs=[result], # Input to this lambda is the output of `result` (gr.Image)
|
| 372 |
+
outputs=[video_gen_accordion, generate_video_btn, download_btn],
|
| 373 |
+
)
|
| 374 |
with gr.Accordion("Download Image from URL", open=False):
|
| 375 |
image_url_input = gr.Text(label="Image URL", placeholder="Enter image URL (e.g., http://.../image.png)")
|
| 376 |
filename_input = gr.Text(
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
huggingface-hub
|
| 2 |
numpy
|
| 3 |
-
python-dotenv
|
|
|
|
|
|
| 1 |
huggingface-hub
|
| 2 |
numpy
|
| 3 |
+
python-dotenv
|
| 4 |
+
fal-client
|