File size: 18,432 Bytes
7f4c99b
 
 
 
 
 
 
 
 
c864180
7f4c99b
 
 
 
 
989c44e
 
8aaffb1
7f4c99b
8aaffb1
 
 
 
 
 
 
c864180
51b7c7d
 
7f4c99b
 
 
 
 
 
989c44e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f4c99b
06529b5
 
 
 
 
 
7f4c99b
06529b5
989c44e
06529b5
7f4c99b
 
 
aa0cb15
 
7f4c99b
 
 
 
 
 
 
 
 
 
 
 
989c44e
7f4c99b
8aaffb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b695f49
9d0cfb2
56a627f
 
c864180
 
 
 
 
 
 
 
989c44e
 
 
 
 
0fb3ed4
989c44e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb3ed4
989c44e
 
 
 
 
 
 
 
 
 
 
9d0cfb2
02b00c0
 
 
9d0cfb2
02b00c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989c44e
d46f000
989c44e
 
 
0fb3ed4
 
8aaffb1
989c44e
 
 
 
31dae9f
989c44e
 
 
31dae9f
 
 
f4f56a0
31dae9f
 
989c44e
8aaffb1
1110156
 
 
 
 
 
 
 
8aaffb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989c44e
d46f000
7f4c99b
 
 
9d0cfb2
 
 
7f4c99b
 
 
 
 
 
 
989c44e
 
 
 
 
 
 
 
 
 
 
 
 
7f4c99b
989c44e
 
8aaffb1
989c44e
 
 
 
 
 
 
 
 
8aaffb1
 
 
 
7f4c99b
 
 
 
75ba08b
 
 
 
7f4c99b
 
 
 
 
 
 
 
 
 
02b00c0
7f4c99b
989c44e
 
 
7f4c99b
 
9df7698
 
 
7f4c99b
7a45fb3
7f4c99b
5df8f58
 
7f4c99b
02b00c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f4c99b
02b00c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f4c99b
 
02b00c0
c864180
7f4c99b
 
 
 
 
2b7d18b
7f4c99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b00c0
7f4c99b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import os
import subprocess
import sys
import io
import gradio as gr
import numpy as np
import random
import spaces
import torch
import uuid
from diffusers import Flux2Pipeline, Flux2Transformer2DModel
from diffusers import BitsAndBytesConfig as DiffBitsAndBytesConfig
import requests
from PIL import Image
import json
import base64
from huggingface_hub import InferenceClient
import logging

# Enhanced logging configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)

subprocess.check_call([sys.executable, "-m", "pip", "install", "spaces==0.43.0"])

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

hf_client = InferenceClient(
    api_key=os.environ.get("HF_TOKEN"),
)
VLM_MODEL = "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT"

SYSTEM_PROMPT_TEXT_ONLY = """You are an expert prompt engineer for FLUX.2 by Black Forest Labs. Rewrite user prompts to be more descriptive while strictly preserving their core subject and intent.
Guidelines:
1. Structure: Keep structured inputs structured (enhance within fields). Convert natural language to detailed paragraphs.
2. Details: Add concrete visual specifics - form, scale, textures, materials, lighting (quality, direction, color), shadows, spatial relationships, and environmental context.
3. Text in Images: Put ALL text in quotation marks, matching the prompt's language. Always provide explicit quoted text for objects that would contain text in reality (signs, labels, screens, etc.) - without it, the model generates gibberish.
Output only the revised prompt and nothing else."""

SYSTEM_PROMPT_WITH_IMAGES = """You are FLUX.2 by Black Forest Labs, an image-editing expert. You convert editing requests into one concise instruction (50-80 words, ~30 for brief requests).
Rules:
- Single instruction only, no commentary
- Use clear, analytical language (avoid "whimsical," "cascading," etc.)
- Specify what changes AND what stays the same (face, lighting, composition)
- Reference actual image elements
- Turn negatives into positives ("don't change X" → "keep X")
- Make abstractions concrete ("futuristic" → "glowing cyan neon, metallic panels")
- Keep content PG-13
Output only the final instruction in plain text and nothing else."""

def remote_text_encoder(prompts):
    from gradio_client import Client
    
    client = Client("multimodalart/mistral-text-encoder")
    result = client.predict(
        prompt=prompts,
        api_name="/encode_text"
    )
    
    # Load returns a tensor, usually on CPU by default
    prompt_embeds = torch.load(result[0])
    return prompt_embeds

# Load model
repo_id = "black-forest-labs/FLUX.2-dev"

dit = Flux2Transformer2DModel.from_pretrained(
    repo_id,
    subfolder="transformer",
    torch_dtype=torch.bfloat16
)

pipe = Flux2Pipeline.from_pretrained(
    repo_id,
    text_encoder=None,
    transformer=dit,
    torch_dtype=torch.bfloat16
)
pipe.to(device)

class GenerationError(Exception):
    """Custom exception for generation errors"""
    pass

# -------------------- NSFW 检测模型加载 --------------------
try:
    logger.info("Loading NSFW detector...")
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    from transformers import AutoProcessor, AutoModelForImageClassification
    nsfw_processor = AutoProcessor.from_pretrained("Falconsai/nsfw_image_detection")
    nsfw_model = AutoModelForImageClassification.from_pretrained(
        "Falconsai/nsfw_image_detection"
    ).to(device)
    logger.info("NSFW detector loaded successfully.")
except Exception as e:
    logger.error(f"Failed to load NSFW detector: {e}")
    nsfw_model = None
    nsfw_processor = None

def detect_nsfw(image: Image.Image, threshold: float = 0.5) -> bool:
    """Returns True if image is NSFW"""
    inputs = nsfw_processor(images=image, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = nsfw_model(**inputs)
        probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
        nsfw_score = probs[0][1].item()  # label 1 = NSFW
    return nsfw_score > threshold

# Pull pre-compiled Flux2 Transformer blocks from HF hub
# flash-attn估计库估计更新了,导致冲突了,不使用预编译的了
# spaces.aoti_blocks_load(pipe.transformer, "zerogpu-aoti/FLUX.2", variant="fa3")

def save_image(image, output_dir):
    filename = str(uuid.uuid4()) + ".jpg"
    os.makedirs(output_dir, exist_ok=True)
    filepath = os.path.join(output_dir, filename)
    image.save(filepath, "JPEG", quality=80)
    return filepath


def image_to_data_uri(img):
    buffered = io.BytesIO()
    img.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return f"data:image/png;base64,{img_str}"

def upsample_prompt_logic(prompt, image_list):
    try:
        if image_list and len(image_list) > 0:
            # Image + Text Editing Mode
            system_content = SYSTEM_PROMPT_WITH_IMAGES
            
            # Construct user message with text and images
            user_content = [{"type": "text", "text": prompt}]
            
            for img in image_list:
                data_uri = image_to_data_uri(img)
                user_content.append({
                    "type": "image_url",
                    "image_url": {"url": data_uri}
                })
                
            messages = [
                {"role": "system", "content": system_content},
                {"role": "user", "content": user_content}
            ]
        else:
            # Text Only Mode
            system_content = SYSTEM_PROMPT_TEXT_ONLY
            messages = [
                {"role": "system", "content": system_content},
                {"role": "user", "content": prompt}
            ]

        completion = hf_client.chat.completions.create(
            model=VLM_MODEL,
            messages=messages,
            max_tokens=1024
        )
        
        return completion.choices[0].message.content
    except Exception as e:
        print(f"Upsampling failed: {e}")
        return prompt

def update_dimensions_from_image(image_list, width, height):
    """Update width/height sliders based on uploaded image aspect ratio.
    Keeps one side at 1024 and scales the other proportionally, with both sides as multiples of 8."""
    if image_list is None or len(image_list) == 0:
        return width, height  # Default dimensions
    
    # Get the first image to determine dimensions
    img = image_list[0][0]  # Gallery returns list of tuples (image, caption)
    img_width, img_height = img.size
    
    aspect_ratio = img_width / img_height
    
    if aspect_ratio >= 1:  # Landscape or square
        new_width = 1024
        new_height = int(1024 / aspect_ratio)
    else:  # Portrait
        new_height = 1024
        new_width = int(1024 * aspect_ratio)
    
    # Round to nearest multiple of 8
    new_width = round(new_width / 8) * 8
    new_height = round(new_height / 8) * 8
    
    # Ensure within valid range (minimum 256, maximum 1024)
    new_width = max(256, min(1024, new_width))
    new_height = max(256, min(1024, new_height))
    
    return new_width, new_height

# Updated duration function to match generate_image arguments (including progress)
def get_duration(prompt_embeds, image_list, width, height, num_inference_steps, guidance_scale, seed, progress=gr.Progress()):
    num_images = 0 if image_list is None else len(image_list)
    step_duration = 1 + 0.8 * num_images
    return max(65, num_inference_steps * step_duration + 10)

@spaces.GPU(duration=get_duration)
def _generate_image(prompt_embeds, image_list, width, height, num_inference_steps, guidance_scale, seed, progress=gr.Progress()):
    # Move embeddings to GPU only when inside the GPU decorated function
    prompt_embeds = prompt_embeds.to(device)
    
    generator = torch.Generator(device=device).manual_seed(seed)
 
    # Progress bar for the actual generation steps
    if progress:
        progress(0, desc="Starting generation...")

    def callback_fn(pipe, step, timestep, callback_kwargs):
        print(f"[Step {step}] Timestep: {timestep}")
        progress_value = 0.3+((step+1.0)/num_inference_steps)*0.7
        progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
        return callback_kwargs
        
    try:
        if image_list and len(image_list) > 0:
            for img in image_list:
                # NSFW 检测
                if nsfw_model and nsfw_processor:
                    if detect_nsfw(img):
                        msg = "The input image contains NSFW content and cannot be generated. Please modify the input image or prompt and try again."
                        raise Exception(msg)
                    
        image = pipe(
            prompt_embeds=prompt_embeds,
            image=image_list,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            generator=generator,
            width=width,
            height=height,
            callback_on_step_end=callback_fn,
        ).images[0]

        # NSFW 检测
        if nsfw_model and nsfw_processor:
            if detect_nsfw(image):
                msg = "Generated image contains NSFW content and cannot be displayed. Please modify the input image or prompt and try again."
                raise Exception(msg)

        path = save_image(image, "./outputs")
        progress(1, desc="Complete")
        info = {
            "status": "success"
        }
        return path, info
    except GenerationError as e:
        error_info = {
            "error": str(e),
            "status": "failed",
        }
        return None, error_info
    except Exception as e:
        error_info = {
            "error": str(e),
            "status": "failed",
        }
        return None, error_info

def infer(prompt, input_images=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=2.5, prompt_upsampling=False, progress=gr.Progress()):
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Auto-update dimensions when images are uploaded
    width, height = update_dimensions_from_image(input_images, width, height)
    
    # Prepare image list (convert None or empty gallery to None)
    image_list = None
    if input_images is not None and len(input_images) > 0:
        image_list = []
        for item in input_images:
            image_list.append(item[0])

    # 1. Upsampling (Network bound - No GPU needed)
    final_prompt = prompt
    if prompt_upsampling:
        progress(0.05, desc="Upsampling prompt...")
        final_prompt = upsample_prompt_logic(prompt, image_list)
        print(f"Original Prompt: {prompt}")
        print(f"Upsampled Prompt: {final_prompt}")

    # 2. Text Encoding (Network bound - No GPU needed)
    progress(0.1, desc="Encoding prompt...")
    # This returns CPU tensors
    prompt_embeds = remote_text_encoder(final_prompt)
    
    # 3. Image Generation (GPU bound)
    progress(0.3, desc="Waiting for GPU...")
    image, info = _generate_image(
        prompt_embeds, 
        image_list, 
        width, 
        height, 
        num_inference_steps, 
        guidance_scale, 
        seed, 
        progress
    )

    # 如果出错,抛出异常
    if info["status"] == "failed":
        raise gr.Error(info["error"])
    
    return image, seed

examples = [
    ["Create a vase on a table in living room, the color of the vase is a gradient of color, starting with #02eb3c color and finishing with #edfa3c. The flowers inside the vase have the color #ff0088"],
    ["Photorealistic infographic showing the complete Berlin TV Tower (Fernsehturm) from ground base to antenna tip, full vertical view with entire structure visible including concrete shaft, metallic sphere, and antenna spire. Slight upward perspective angle looking up toward the iconic sphere, perfectly centered on clean white background. Left side labels with thin horizontal connector lines: the text '368m' in extra large bold dark grey numerals (#2D3748) positioned at exactly the antenna tip with 'TOTAL HEIGHT' in small caps below. The text '207m' in extra large bold with 'TELECAFÉ' in small caps below, with connector line touching the sphere precisely at the window level. Right side label with horizontal connector line touching the sphere's equator: the text '32m' in extra large bold dark grey numerals with 'SPHERE DIAMETER' in small caps below. Bottom section arranged in three balanced columns: Left - Large text '986' in extra bold dark grey with 'STEPS' in caps below. Center - 'BERLIN TV TOWER' in bold caps with 'FERNSEHTURM' in lighter weight below. Right - 'INAUGURATED' in bold caps with 'OCTOBER 3, 1969' below. All typography in modern sans-serif font (such as Inter or Helvetica), color #2D3748, clean minimal technical diagram style. Horizontal connector lines are thin, precise, and clearly visible, touching the tower structure at exact corresponding measurement points. Professional architectural elevation drawing aesthetic with dynamic low angle perspective creating sense of height and grandeur, poster-ready infographic design with perfect visual hierarchy."],
    ["Soaking wet capybara taking shelter under a banana leaf in the rainy jungle, close up photo"],
    ["A kawaii die-cut sticker of a chubby orange cat, featuring big sparkly eyes and a happy smile with paws raised in greeting and a heart-shaped pink nose. The design should have smooth rounded lines with black outlines and soft gradient shading with pink cheeks."],
]

examples_images = [
    # ["Replace the top of the person from image 1 with the one from image 2", ["person1.webp", "woman2.webp"]],
    ["The person from image 1 is petting the cat from image 2, the bird from image 3 is next to them", ["woman1.webp", "cat_window.webp", "bird.webp"]]
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 1200px;
}
.gallery-container img{
    object-fit: contain;
}
"""

title = "# AI Image Editor"
description = "AI Image Editor transforms your photos using simple text prompts only. Describe the change you want—from subtle tweaks to major edits—and watch AI instantly deliver professional, high-quality results. Unleash your creativity without complex software! Try unlimited version at [AI image editor](https://www.image2image.ai)."

with gr.Blocks() as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(title)
        gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=2,
                        placeholder="Enter your prompt",
                        container=False,
                        scale=3
                    )
                    
                    run_button = gr.Button("Run", scale=1)
                    
                with gr.Accordion("Input image(s) (optional)", open=True):
                    input_images = gr.Gallery(
                        label="Input Image(s)",
                        type="pil",
                        columns=3,
                        rows=1,
                    )
                
                with gr.Accordion("Advanced Settings", open=False):
                    prompt_upsampling = gr.Checkbox(
                        label="Prompt Upsampling",
                        value=True,
                        info="Automatically enhance the prompt using a VLM"
                    )
        
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    
                    with gr.Row():
                        
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=8,
                            value=1024,
                        )
                        
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=8,
                            value=1024,
                        )
                    
                    with gr.Row():
                        
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=100,
                            step=1,
                            value=30,
                        )
                        
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=4,
                        )
                
                
            with gr.Column():
                result = gr.Image(label="Result",type="filepath", show_label=False)
            
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples=True,
            cache_mode="lazy"
        )

        gr.Examples(
            examples=examples_images,
            fn=infer,
            inputs=[prompt, input_images],
            outputs=[result, seed],
            cache_examples=True,
            cache_mode="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, input_images, seed, randomize_seed, width, height, num_inference_steps, guidance_scale, prompt_upsampling],
        outputs=[result, seed]
    )

demo.launch(css=css)