Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import numpy as np
|
| 2 |
from PIL import Image
|
| 3 |
-
from huggingface_hub import snapshot_download
|
| 4 |
from leffa.transform import LeffaTransform
|
| 5 |
from leffa.model import LeffaModel
|
| 6 |
from leffa.inference import LeffaInference
|
|
@@ -13,11 +13,19 @@ from diffusers import DiffusionPipeline
|
|
| 13 |
from transformers import pipeline
|
| 14 |
import gradio as gr
|
| 15 |
import os
|
| 16 |
-
from huggingface_hub import login
|
| 17 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# 상수 정의
|
| 20 |
MAX_SEED = 2**32 - 1
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Hugging Face 토큰 설정 및 로그인
|
| 23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
@@ -25,20 +33,26 @@ if HF_TOKEN is None:
|
|
| 25 |
raise ValueError("Please set the HF_TOKEN environment variable")
|
| 26 |
login(token=HF_TOKEN)
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
#
|
|
|
|
|
|
|
|
|
|
| 34 |
fashion_pipe = DiffusionPipeline.from_pretrained(
|
| 35 |
-
|
| 36 |
-
torch_dtype=torch.
|
| 37 |
use_auth_token=HF_TOKEN
|
| 38 |
)
|
| 39 |
-
fashion_pipe.
|
| 40 |
|
| 41 |
-
# 번역기 초기화
|
| 42 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 43 |
|
| 44 |
# Leffa 체크포인트 다운로드
|
|
@@ -55,18 +69,22 @@ densepose_predictor = DensePosePredictor(
|
|
| 55 |
weights_path="./ckpts/densepose/model_final_162be9.pkl",
|
| 56 |
)
|
| 57 |
|
|
|
|
| 58 |
vt_model = LeffaModel(
|
| 59 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
| 60 |
pretrained_model="./ckpts/virtual_tryon.pth",
|
|
|
|
| 61 |
)
|
| 62 |
vt_inference = LeffaInference(model=vt_model)
|
| 63 |
|
| 64 |
pt_model = LeffaModel(
|
| 65 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
| 66 |
pretrained_model="./ckpts/pose_transfer.pth",
|
|
|
|
| 67 |
)
|
| 68 |
pt_inference = LeffaInference(model=pt_model)
|
| 69 |
|
|
|
|
| 70 |
def contains_korean(text):
|
| 71 |
return any(ord('가') <= ord(char) <= ord('힣') for char in text)
|
| 72 |
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
from PIL import Image
|
| 3 |
+
from huggingface_hub import snapshot_download, login
|
| 4 |
from leffa.transform import LeffaTransform
|
| 5 |
from leffa.model import LeffaModel
|
| 6 |
from leffa.inference import LeffaInference
|
|
|
|
| 13 |
from transformers import pipeline
|
| 14 |
import gradio as gr
|
| 15 |
import os
|
|
|
|
| 16 |
import random
|
| 17 |
+
import gc
|
| 18 |
+
|
| 19 |
+
# 메모리 최적화 설정
|
| 20 |
+
torch.backends.cudnn.benchmark = True
|
| 21 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 22 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
| 23 |
|
| 24 |
# 상수 정의
|
| 25 |
MAX_SEED = 2**32 - 1
|
| 26 |
+
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
|
| 27 |
+
MODEL_LORA_REPO = "Motas/Flux_Fashion_Photography_Style"
|
| 28 |
+
CLOTHES_LORA_REPO = "prithivMLmods/Canopus-Clothing-Flux-LoRA"
|
| 29 |
|
| 30 |
# Hugging Face 토큰 설정 및 로그인
|
| 31 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 33 |
raise ValueError("Please set the HF_TOKEN environment variable")
|
| 34 |
login(token=HF_TOKEN)
|
| 35 |
|
| 36 |
+
# 메모리 정리 함수
|
| 37 |
+
def clear_memory():
|
| 38 |
+
torch.cuda.empty_cache()
|
| 39 |
+
gc.collect()
|
| 40 |
+
|
| 41 |
+
# 초기 메모리 정리
|
| 42 |
+
clear_memory()
|
| 43 |
|
| 44 |
+
# CUDA 사용 가능 여부 확인
|
| 45 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 46 |
+
|
| 47 |
+
# FLUX 모델 초기화
|
| 48 |
fashion_pipe = DiffusionPipeline.from_pretrained(
|
| 49 |
+
BASE_MODEL,
|
| 50 |
+
torch_dtype=torch.float16,
|
| 51 |
use_auth_token=HF_TOKEN
|
| 52 |
)
|
| 53 |
+
fashion_pipe.enable_model_cpu_offload()
|
| 54 |
|
| 55 |
+
# 번역기 초기화
|
| 56 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 57 |
|
| 58 |
# Leffa 체크포인트 다운로드
|
|
|
|
| 69 |
weights_path="./ckpts/densepose/model_final_162be9.pkl",
|
| 70 |
)
|
| 71 |
|
| 72 |
+
# Leffa 모델 초기화
|
| 73 |
vt_model = LeffaModel(
|
| 74 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
| 75 |
pretrained_model="./ckpts/virtual_tryon.pth",
|
| 76 |
+
device_map="auto"
|
| 77 |
)
|
| 78 |
vt_inference = LeffaInference(model=vt_model)
|
| 79 |
|
| 80 |
pt_model = LeffaModel(
|
| 81 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
| 82 |
pretrained_model="./ckpts/pose_transfer.pth",
|
| 83 |
+
device_map="auto"
|
| 84 |
)
|
| 85 |
pt_inference = LeffaInference(model=pt_model)
|
| 86 |
|
| 87 |
+
|
| 88 |
def contains_korean(text):
|
| 89 |
return any(ord('가') <= ord(char) <= ord('힣') for char in text)
|
| 90 |
|