File size: 7,081 Bytes
0edd51d
 
5d72442
0edd51d
b29dae5
59190de
c8487d0
8a56a43
0edd51d
7378fc3
0edd51d
 
89539f7
 
0edd51d
 
 
 
 
 
13b1725
8a56a43
 
 
13b1725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59190de
13b1725
89539f7
c46faf4
89539f7
 
 
 
 
 
 
d8fa9a9
 
89539f7
35efd64
c46faf4
 
 
3423af0
0e124a3
c46faf4
59190de
c46faf4
 
59190de
c46faf4
 
59190de
 
 
 
 
 
 
 
9f034f3
59190de
0e124a3
13b1725
0edd51d
 
8712f05
 
 
0edd51d
 
89539f7
0edd51d
f864b44
0edd51d
c46faf4
89539f7
0edd51d
 
89539f7
0edd51d
 
89539f7
c4f511b
 
 
89539f7
c46faf4
 
89539f7
f864b44
89539f7
ea5b528
7378fc3
f864b44
c46faf4
 
f864b44
c46faf4
 
 
f864b44
89539f7
 
 
 
 
 
 
 
f864b44
 
89539f7
f864b44
 
 
 
0edd51d
f864b44
89539f7
f864b44
 
e816968
f864b44
0edd51d
89539f7
f864b44
89539f7
 
 
 
 
 
 
f864b44
89539f7
f864b44
 
 
d8fa9a9
89539f7
f864b44
 
89539f7
f864b44
 
 
89539f7
 
f864b44
89539f7
f864b44
 
 
d8fa9a9
89539f7
0edd51d
89539f7
 
19e9e25
89539f7
13b1725
 
89539f7
0edd51d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59bd43d
 
 
c46faf4
59bd43d
 
 
0edd51d
 
 
 
 
 
13b1725
59bd43d
 
c46faf4
59bd43d
 
 
 
 
 
 
 
 
 
 
13b1725
 
0edd51d
89539f7
 
19e9e25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import random
import base64
import gradio as gr
from PIL import Image
from gradio_client import Client
import numpy as np
from io import BytesIO

DESCRIPTION = "# SDXL Texture"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def generate_normal_map(image):
    if not isinstance(image, Image.Image):
        image = Image.open(BytesIO(image))
        
    # Convert image to grayscale
    grayscale = image.convert("L")
    grayscale_np = np.array(grayscale)
    
    # Compute gradients
    grad_x, grad_y = np.gradient(grayscale_np.astype(float))
    
    # Normalize gradients
    grad_x = (grad_x - grad_x.min()) / (grad_x.max() - grad_x.min())
    grad_y = (grad_y - grad_y.min()) / (grad_y.max() - grad_y.min())
    
    # Create normal map
    normal_map = np.dstack((grad_x, grad_y, np.ones_like(grad_x)))
    normal_map = (normal_map * 255).astype(np.uint8)
    
    return Image.fromarray(normal_map)

def generate_image(
    prompt: str,
    additional_prompt: str = "",
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale_base: float = 5.0,
    guidance_scale_refiner: float = 5.0,
    num_inference_steps_base: int = 25,
    num_inference_steps_refiner: int = 25,
    apply_refiner: bool = False,
):
    if additional_prompt != "":
        additional_prompt += ", "
    
    client = Client("hysts/SDXL")
    image = client.predict(
        prompt=additional_prompt+prompt,
        negative_prompt=negative_prompt,
        prompt_2="",
        negative_prompt_2="",
        use_negative_prompt=use_negative_prompt,
        use_prompt_2=False,
        use_negative_prompt_2=False,
        seed=seed,
        width=width,
        height=height,
        guidance_scale_base=guidance_scale_base,
        guidance_scale_refiner=guidance_scale_refiner,
        num_inference_steps_base=num_inference_steps_base,
        num_inference_steps_refiner=num_inference_steps_refiner,
        apply_refiner=apply_refiner,
        api_name="/predict",
    )
    normal_map = generate_normal_map(Image.open(image))
    return image, normal_map

examples = [
    "A texture of grey wood, close-up, high contrast",
    "A 4K texture of cobblestone, sharp rocks, hd material",
    "A texture of white marble, light grey, seamless",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        with gr.Row():
            result_image = gr.Image(label="Texture", show_label=True)
            result_normal = gr.Image(label="Normal", show_label=True)
    with gr.Accordion("Advanced options", open=False):
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=True,
            value="anatomy, text, logos, faces, animals, recognizable objects, cube, sphere, human, hands",
        )
        additional_prompt = gr.Textbox(
            label="Additional prompt",
            max_lines=1,
            placeholder="Enter an additional prompt",
            visible=True,
            value="((Seamless texture)), versatile pattern, high resolution, detailed design, subtle patterns, non-repetitive, smooth edges, square",
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
        apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
        with gr.Row():
            guidance_scale_base = gr.Slider(
                label="Guidance scale for base",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
            num_inference_steps_base = gr.Slider(
                label="Number of inference steps for base",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )
        with gr.Row(visible=False) as refiner_params:
            guidance_scale_refiner = gr.Slider(
                label="Guidance scale for refiner",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
            num_inference_steps_refiner = gr.Slider(
                label="Number of inference steps for refiner",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )

    gr.Examples(
        examples=examples,
        cache_examples=False,
        inputs=prompt,
        outputs=[result_image, result_normal],
        fn=generate_image,
    )
    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        queue=False,
        api_name=False,
    )
    apply_refiner.change(
        fn=lambda x: gr.update(visible=x),
        inputs=apply_refiner,
        outputs=refiner_params,
        queue=False,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            additional_prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate_image,
        inputs=[
            prompt,
            additional_prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale_base,
            guidance_scale_refiner,
            num_inference_steps_base,
            num_inference_steps_refiner,
            apply_refiner,
        ],
        outputs=[result_image, result_normal],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch(ssr_mode=False)