BIORD / app.py
hangunwoo07's picture
Update app.py
ac0be08 verified
import gradio as gr
import json
import os
import torch
from torchvision import transforms
from PIL import Image
import folium
import base64
import glob
import warnings
from datasets import load_dataset
import io
from zipfile import ZipFile
warnings.filterwarnings("ignore", category=FutureWarning)
# Load dataset from Hugging Face
dataset = load_dataset("hangunwoo07/Naturing_Bird_Data")
dataset = dataset['train'] # Access the train split directly
# Load bird data
with open('DB/bird_data.json', 'r', encoding='utf-8') as f:
bird_data = json.load(f)
# Load model and classes
model_ft = torch.load('bird_detection_model.pth', map_location=torch.device('cpu'))
model_ft.eval()
with open('DB/class_names.json', 'r', encoding='utf-8') as f:
classes = json.load(f)
# Constants
DSHS_LOCATION = [36.373719, 127.370415]
def create_image_popup(bird_name, image_filename):
target_image = '/'.join(bird_name, image_filename.split())
row_index = metadata[metadata['image'] == target_image].index[0] - 1
try:
with open(dataset['image'][row_index], 'rb') as image_file:
encoded = base64.b64encode(image_file.read()).decode()
return f'<img src="data:image/jpeg;base64,{encoded}" width="200px">'
except:
return ''
def create_map():
"""
Create an interactive map with bird sightings
"""
m = folium.Map(location=DSHS_LOCATION, zoom_start=15)
dshs_popup_content = f"""
<div>
<h4>대전과학고등학교</h4>
</div>
"""
# 대전과학고 마커 추가
folium.Marker(
DSHS_LOCATION,
popup=folium.Popup(dshs_popup_content, max_width=300),
tooltip="대전과학고등학교"
).add_to(m)
# Process all bird location files
location_files = glob.glob('./DB/bird_locations_json/bird_locations_*.json')
for file_path in location_files:
bird_name = file_path.split('_')[-1].replace('.json', '')
try:
with open(file_path, 'r', encoding='utf-8') as f:
locations_data = json.load(f)
if bird_name in locations_data and locations_data[bird_name]:
for location_info in locations_data[bird_name]:
try:
latitude = location_info['latitude']
longitude = location_info['longitude']
location = location_info['location'].lstrip() # Remove leading whitespace
image_filename = location_info['image_filename']
# Create popup content with image from dataset
popup_content = f"""
<div>
<h4>{bird_name}</h4>
<p>{location}</p>
{create_image_popup(bird_name, image_filename)}
</div>
"""
# Add marker
folium.CircleMarker(
location=[latitude, longitude],
radius=4,
popup=folium.Popup(popup_content, max_width=300),
tooltip=bird_name,
color='red',
fill=True
).add_to(m)
except Exception as e:
print(f"Error processing location for {bird_name}: {e}")
continue
else:
print(f'No locations found for {bird_name}')
except Exception as e:
print(f"Error processing file {file_path}: {e}")
continue
return m._repr_html_()
def search_birds(search_term):
filtered_gallery = []
for bird_id, bird_info in bird_data.items():
if search_term.lower() in bird_info['common_name'].lower() or search_term.lower() in bird_info['scientific_name'].lower():
image_path = os.path.join(image_folder, f"{bird_id}.jpg")
filtered_gallery.append((image_path, f"{bird_info['common_name']}"))
return filtered_gallery
def main_page():
gallery = []
for bird_id, bird_info in bird_data.items():
image_path = os.path.join(image_folder, f"{bird_id}.jpg")
gallery.append((image_path, f"{bird_info['common_name']}"))
return gallery
def detail_page(evt: gr.SelectData):
image_path = evt.value['image']['path']
bird_id = os.path.basename(image_path).split('.')[0]
selected_bird = bird_data[bird_id]
info = f"""
# {selected_bird['common_name']} ({selected_bird['scientific_name']})
## 분류
- 문: {selected_bird['classification']['phylum']}
- 강: {selected_bird['classification']['class']}
- 목: {selected_bird['classification']['order']}
- 과: {selected_bird['classification']['family']}
- 속: {selected_bird['classification']['genus']}
## 생태적 특징
{selected_bird['ecological_characteristics']}
## 일반적 특징
{selected_bird['general_characteristics']}
"""
return image_path, info
def apply_test_transforms(inp):
out = transforms.functional.resize(inp, [224,224])
out = transforms.functional.to_tensor(out)
out = transforms.functional.normalize(out, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
return out
def predict(model, filepath):
im = Image.open(filepath)
im_as_tensor = apply_test_transforms(im)
minibatch = torch.stack([im_as_tensor])
if torch.cuda.is_available():
minibatch = minibatch.cuda()
pred = model(minibatch)
_, classnum = torch.max(pred, 1)
print(classnum)
return classes[str(classnum.item())]
def classify_bird(image):
result = predict(model_ft, image)
return result
with gr.Blocks() as demo:
gr.Markdown("# BIORD")
gr.Markdown("## Bird's Information & Organized Regional Database")
# 대전과학고 지도 탭
with gr.Tab("대전과고 지도"):
map_html = gr.HTML(value=create_map())
# 조류 도감 탭
with gr.Tab("조류 도감"):
with gr.Row():
search_input = gr.Textbox(label="새 이름 검색", placeholder="검색하고 싶은 새의 이름을 입력하세요")
with gr.Row():
with gr.Column(scale=2):
gallery = gr.Gallery(value=main_page(), columns=40, rows=6, height=660)
with gr.Column(scale=3):
selected_image = gr.Image(label="선택한 새")
info = gr.Markdown(label="상세 정보")
search_input.change(search_birds, inputs=[search_input], outputs=[gallery])
gallery.select(detail_page, None, [selected_image, info])
# 조류 동정 탭
with gr.Tab("조류 동정"):
image_input = gr.Image(type="filepath")
classify_btn = gr.Button("예측하기")
output = gr.Textbox(label="예측 결과")
classify_btn.click(fn=classify_bird, inputs=image_input, outputs=output)
# 애플리케이션 실행
demo.launch()