Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,11 @@ from transformers import (
|
|
| 4 |
GPT2LMHeadModel, GPT2Tokenizer,
|
| 5 |
pipeline
|
| 6 |
)
|
|
|
|
|
|
|
| 7 |
st.title("Multi Chatbot")
|
|
|
|
|
|
|
| 8 |
models = {
|
| 9 |
"English to French": {
|
| 10 |
"name": "Helsinki-NLP/opus-mt-en-fr",
|
|
@@ -19,39 +23,62 @@ models = {
|
|
| 19 |
"description": "Generate creative stories based on input."
|
| 20 |
}
|
| 21 |
}
|
|
|
|
|
|
|
| 22 |
st.sidebar.header("Choose a Model")
|
| 23 |
selected_model_key = st.sidebar.radio("Select a Model:", list(models.keys()))
|
| 24 |
model_name = models[selected_model_key]["name"]
|
| 25 |
model_description = models[selected_model_key]["description"]
|
|
|
|
| 26 |
st.sidebar.markdown(f"### Model Description\n{model_description}")
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
user_input = st.text_input("Enter your query:")
|
|
|
|
| 46 |
if user_input:
|
| 47 |
if selected_model_key == "English to French":
|
| 48 |
try:
|
| 49 |
-
inputs =
|
| 50 |
-
outputs =
|
| 51 |
-
|
| 52 |
-
st.write(f"Translated Text: {
|
| 53 |
except Exception as e:
|
| 54 |
st.error(f"Error during translation: {e}")
|
|
|
|
| 55 |
elif selected_model_key == "Sentiment Analysis":
|
| 56 |
try:
|
| 57 |
result = sentiment_analyzer(user_input)[0]
|
|
@@ -59,12 +86,19 @@ if user_input:
|
|
| 59 |
st.write(f"Confidence: {result['score']:.2f}")
|
| 60 |
except Exception as e:
|
| 61 |
st.error(f"Error during sentiment analysis: {e}")
|
|
|
|
| 62 |
elif selected_model_key == "Story Generator":
|
| 63 |
try:
|
| 64 |
-
inputs =
|
| 65 |
-
outputs =
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
except Exception as e:
|
| 69 |
st.error(f"Error during story generation: {e}")
|
| 70 |
-
|
|
|
|
| 4 |
GPT2LMHeadModel, GPT2Tokenizer,
|
| 5 |
pipeline
|
| 6 |
)
|
| 7 |
+
|
| 8 |
+
# App title
|
| 9 |
st.title("Multi Chatbot")
|
| 10 |
+
|
| 11 |
+
# Define models and descriptions
|
| 12 |
models = {
|
| 13 |
"English to French": {
|
| 14 |
"name": "Helsinki-NLP/opus-mt-en-fr",
|
|
|
|
| 23 |
"description": "Generate creative stories based on input."
|
| 24 |
}
|
| 25 |
}
|
| 26 |
+
|
| 27 |
+
# Sidebar: Model selection
|
| 28 |
st.sidebar.header("Choose a Model")
|
| 29 |
selected_model_key = st.sidebar.radio("Select a Model:", list(models.keys()))
|
| 30 |
model_name = models[selected_model_key]["name"]
|
| 31 |
model_description = models[selected_model_key]["description"]
|
| 32 |
+
|
| 33 |
st.sidebar.markdown(f"### Model Description\n{model_description}")
|
| 34 |
+
|
| 35 |
+
# Cache model loading for efficiency
|
| 36 |
+
@st.cache_resource
|
| 37 |
+
def load_english_to_french():
|
| 38 |
+
tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-fr")
|
| 39 |
+
model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-fr")
|
| 40 |
+
return tokenizer, model
|
| 41 |
+
|
| 42 |
+
@st.cache_resource
|
| 43 |
+
def load_sentiment_analysis():
|
| 44 |
+
return pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 45 |
+
|
| 46 |
+
@st.cache_resource
|
| 47 |
+
def load_story_generator():
|
| 48 |
+
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
|
| 49 |
+
model = GPT2LMHeadModel.from_pretrained("distilgpt2")
|
| 50 |
+
tokenizer.pad_token = tokenizer.eos_token # Set pad token to EOS token
|
| 51 |
+
return tokenizer, model
|
| 52 |
+
|
| 53 |
+
# Load the selected model
|
| 54 |
+
if selected_model_key == "English to French":
|
| 55 |
+
st.write("Loading English to French model...")
|
| 56 |
+
en_fr_tokenizer, en_fr_model = load_english_to_french()
|
| 57 |
+
st.write("English to French model loaded successfully.")
|
| 58 |
+
|
| 59 |
+
elif selected_model_key == "Sentiment Analysis":
|
| 60 |
+
st.write("Loading Sentiment Analysis model...")
|
| 61 |
+
sentiment_analyzer = load_sentiment_analysis()
|
| 62 |
+
st.write("Sentiment Analysis model loaded successfully.")
|
| 63 |
+
|
| 64 |
+
elif selected_model_key == "Story Generator":
|
| 65 |
+
st.write("Loading Story Generator model...")
|
| 66 |
+
story_gen_tokenizer, story_gen_model = load_story_generator()
|
| 67 |
+
st.write("Story Generator model loaded successfully.")
|
| 68 |
+
|
| 69 |
+
# User input
|
| 70 |
user_input = st.text_input("Enter your query:")
|
| 71 |
+
|
| 72 |
if user_input:
|
| 73 |
if selected_model_key == "English to French":
|
| 74 |
try:
|
| 75 |
+
inputs = en_fr_tokenizer(user_input, return_tensors="pt", truncation=True, padding=True)
|
| 76 |
+
outputs = en_fr_model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1)
|
| 77 |
+
translated_text = en_fr_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 78 |
+
st.write(f"Translated Text: {translated_text}")
|
| 79 |
except Exception as e:
|
| 80 |
st.error(f"Error during translation: {e}")
|
| 81 |
+
|
| 82 |
elif selected_model_key == "Sentiment Analysis":
|
| 83 |
try:
|
| 84 |
result = sentiment_analyzer(user_input)[0]
|
|
|
|
| 86 |
st.write(f"Confidence: {result['score']:.2f}")
|
| 87 |
except Exception as e:
|
| 88 |
st.error(f"Error during sentiment analysis: {e}")
|
| 89 |
+
|
| 90 |
elif selected_model_key == "Story Generator":
|
| 91 |
try:
|
| 92 |
+
inputs = story_gen_tokenizer(user_input, return_tensors="pt", truncation=True, padding=True)
|
| 93 |
+
outputs = story_gen_model.generate(
|
| 94 |
+
inputs["input_ids"],
|
| 95 |
+
attention_mask=inputs["attention_mask"], # Pass the attention mask
|
| 96 |
+
max_length=200,
|
| 97 |
+
num_return_sequences=1,
|
| 98 |
+
temperature=0.7,
|
| 99 |
+
no_repeat_ngram_size=2
|
| 100 |
+
)
|
| 101 |
+
story = story_gen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 102 |
+
st.write(f"Generated Story: {story}")
|
| 103 |
except Exception as e:
|
| 104 |
st.error(f"Error during story generation: {e}")
|
|
|