Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import (
|
| 3 |
+
MarianMTModel, MarianTokenizer,
|
| 4 |
+
GPT2LMHeadModel, GPT2Tokenizer,
|
| 5 |
+
pipeline
|
| 6 |
+
)
|
| 7 |
+
st.title("Multi Chatbot")
|
| 8 |
+
models = {
|
| 9 |
+
"English to French": {
|
| 10 |
+
"name": "Helsinki-NLP/opus-mt-en-fr",
|
| 11 |
+
"description": "Translate English text to French."
|
| 12 |
+
},
|
| 13 |
+
"Sentiment Analysis": {
|
| 14 |
+
"name": "distilbert-base-uncased-finetuned-sst-2-english",
|
| 15 |
+
"description": "Analyze the sentiment of input text."
|
| 16 |
+
},
|
| 17 |
+
"Story Generator": {
|
| 18 |
+
"name": "distilgpt2",
|
| 19 |
+
"description": "Generate creative stories based on input."
|
| 20 |
+
}
|
| 21 |
+
}
|
| 22 |
+
st.sidebar.header("Choose a Model")
|
| 23 |
+
selected_model_key = st.sidebar.radio("Select a Model:", list(models.keys()))
|
| 24 |
+
model_name = models[selected_model_key]["name"]
|
| 25 |
+
model_description = models[selected_model_key]["description"]
|
| 26 |
+
st.sidebar.markdown(f"### Model Description\n{model_description}")
|
| 27 |
+
try:
|
| 28 |
+
if selected_model_key == "English to French":
|
| 29 |
+
st.write("Loading English to French model...")
|
| 30 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 31 |
+
model = MarianMTModel.from_pretrained(model_name)
|
| 32 |
+
st.write("English to French model loaded successfully.")
|
| 33 |
+
elif selected_model_key == "Sentiment Analysis":
|
| 34 |
+
st.write("Loading Sentiment Analysis model...")
|
| 35 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model=model_name)
|
| 36 |
+
st.write("Sentiment Analysis model loaded successfully.")
|
| 37 |
+
elif selected_model_key == "Story Generator":
|
| 38 |
+
st.write("Loading Story Generator model...")
|
| 39 |
+
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
|
| 40 |
+
model = GPT2LMHeadModel.from_pretrained("distilgpt2")
|
| 41 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 42 |
+
st.write("Story Generator model loaded successfully.")
|
| 43 |
+
except Exception as e:
|
| 44 |
+
st.error(f"Failed to load the model: {e}")
|
| 45 |
+
user_input = st.text_input("Enter your query:")
|
| 46 |
+
if user_input:
|
| 47 |
+
if selected_model_key == "English to French":
|
| 48 |
+
try:
|
| 49 |
+
inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True)
|
| 50 |
+
outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1, no_repeat_ngram_size=2)
|
| 51 |
+
bot_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 52 |
+
st.write(f"Translated Text: {bot_response}")
|
| 53 |
+
except Exception as e:
|
| 54 |
+
st.error(f"Error during translation: {e}")
|
| 55 |
+
elif selected_model_key == "Sentiment Analysis":
|
| 56 |
+
try:
|
| 57 |
+
result = sentiment_analyzer(user_input)[0]
|
| 58 |
+
st.write(f"Sentiment: {result['label']}")
|
| 59 |
+
st.write(f"Confidence: {result['score']:.2f}")
|
| 60 |
+
except Exception as e:
|
| 61 |
+
st.error(f"Error during sentiment analysis: {e}")
|
| 62 |
+
elif selected_model_key == "Story Generator":
|
| 63 |
+
try:
|
| 64 |
+
inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True)
|
| 65 |
+
outputs = model.generate(inputs["input_ids"], max_length=500, num_return_sequences=1, no_repeat_ngram_size=2, temperature=0.7)
|
| 66 |
+
bot_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 67 |
+
st.write(f"Generated Story: {bot_response}")
|
| 68 |
+
except Exception as e:
|
| 69 |
+
st.error(f"Error during story generation: {e}")
|
| 70 |
+
|