Spaces:
Running
on
Zero
Running
on
Zero
Upload mistral_text_encoding_core.py
Browse files- mistral_text_encoding_core.py +121 -0
mistral_text_encoding_core.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Mistral3ForConditionalGeneration, AutoProcessor
|
| 2 |
+
from typing import Union, List, Optional
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def format_text_input(prompts: List[str], system_message: str = None):
|
| 7 |
+
# Remove [IMG] tokens from prompts to avoid Pixtral validation issues
|
| 8 |
+
# when truncation is enabled. The processor counts [IMG] tokens and fails
|
| 9 |
+
# if the count changes after truncation.
|
| 10 |
+
cleaned_txt = [prompt.replace("[IMG]", "") for prompt in prompts]
|
| 11 |
+
|
| 12 |
+
return [
|
| 13 |
+
[
|
| 14 |
+
{
|
| 15 |
+
"role": "system",
|
| 16 |
+
"content": [{"type": "text", "text": system_message}],
|
| 17 |
+
},
|
| 18 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]},
|
| 19 |
+
]
|
| 20 |
+
for prompt in cleaned_txt
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_mistral_3_small_prompt_embeds(
|
| 25 |
+
text_encoder: Mistral3ForConditionalGeneration,
|
| 26 |
+
tokenizer: AutoProcessor,
|
| 27 |
+
prompt: Union[str, List[str]],
|
| 28 |
+
max_sequence_length: int = 512,
|
| 29 |
+
system_message: str = """You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object
|
| 30 |
+
attribution and actions without speculation.""",
|
| 31 |
+
hidden_states_layers: List[int] = (10, 20, 30),
|
| 32 |
+
):
|
| 33 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 34 |
+
|
| 35 |
+
# Format input messages
|
| 36 |
+
messages_batch = format_text_input(prompts=prompt, system_message=system_message)
|
| 37 |
+
|
| 38 |
+
# Process all messages at once
|
| 39 |
+
inputs = tokenizer.apply_chat_template(
|
| 40 |
+
messages_batch,
|
| 41 |
+
add_generation_prompt=False,
|
| 42 |
+
tokenize=True,
|
| 43 |
+
return_dict=True,
|
| 44 |
+
return_tensors="pt",
|
| 45 |
+
padding="max_length",
|
| 46 |
+
truncation=True,
|
| 47 |
+
max_length=max_sequence_length,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Move to device
|
| 51 |
+
input_ids = inputs["input_ids"].to(text_encoder.device)
|
| 52 |
+
attention_mask = inputs["attention_mask"].to(text_encoder.device)
|
| 53 |
+
|
| 54 |
+
# Forward pass through the model
|
| 55 |
+
with torch.inference_mode():
|
| 56 |
+
output = text_encoder(
|
| 57 |
+
input_ids=input_ids,
|
| 58 |
+
attention_mask=attention_mask,
|
| 59 |
+
output_hidden_states=True,
|
| 60 |
+
use_cache=False,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Only use outputs from intermediate layers and stack them
|
| 64 |
+
out = torch.stack([output.hidden_states[k] for k in hidden_states_layers], dim=1)
|
| 65 |
+
out = out.to(dtype=text_encoder.dtype, device=text_encoder.device)
|
| 66 |
+
|
| 67 |
+
batch_size, num_channels, seq_len, hidden_dim = out.shape
|
| 68 |
+
prompt_embeds = out.permute(0, 2, 1, 3).reshape(
|
| 69 |
+
batch_size, seq_len, num_channels * hidden_dim
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
return prompt_embeds
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def prepare_text_ids(
|
| 76 |
+
x: torch.Tensor, # (B, L, D) or (L, D)
|
| 77 |
+
t_coord: Optional[torch.Tensor] = None,
|
| 78 |
+
):
|
| 79 |
+
B, L, _ = x.shape
|
| 80 |
+
out_ids = []
|
| 81 |
+
|
| 82 |
+
for i in range(B):
|
| 83 |
+
t = torch.arange(1) if t_coord is None else t_coord[i]
|
| 84 |
+
h = torch.arange(1)
|
| 85 |
+
w = torch.arange(1)
|
| 86 |
+
l = torch.arange(L)
|
| 87 |
+
|
| 88 |
+
coords = torch.cartesian_prod(t, h, w, l)
|
| 89 |
+
out_ids.append(coords)
|
| 90 |
+
|
| 91 |
+
return torch.stack(out_ids)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def encode_prompt(
|
| 95 |
+
text_encoder: Mistral3ForConditionalGeneration,
|
| 96 |
+
tokenizer: AutoProcessor,
|
| 97 |
+
prompt: Union[str, List[str]],
|
| 98 |
+
num_images_per_prompt: int = 1,
|
| 99 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 100 |
+
max_sequence_length: int = 512,
|
| 101 |
+
):
|
| 102 |
+
if prompt is None:
|
| 103 |
+
prompt = ""
|
| 104 |
+
|
| 105 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 106 |
+
|
| 107 |
+
if prompt_embeds is None:
|
| 108 |
+
prompt_embeds = get_mistral_3_small_prompt_embeds(
|
| 109 |
+
text_encoder=text_encoder,
|
| 110 |
+
tokenizer=tokenizer,
|
| 111 |
+
prompt=prompt,
|
| 112 |
+
max_sequence_length=max_sequence_length,
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
batch_size, seq_len, _ = prompt_embeds.shape
|
| 116 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 117 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 118 |
+
|
| 119 |
+
text_ids = prepare_text_ids(prompt_embeds)
|
| 120 |
+
text_ids = text_ids.to(text_encoder.device)
|
| 121 |
+
return prompt_embeds, text_ids
|