import os import gc import gradio as gr import numpy as np import spaces import torch import random from PIL import Image from typing import Iterable from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes colors.orange_red = colors.Color( name="orange_red", c50="#FFF0E5", c100="#FFE0CC", c200="#FFC299", c300="#FFA366", c400="#FF8533", c500="#FF4500", c600="#E63E00", c700="#CC3700", c800="#B33000", c900="#992900", c950="#802200", ) class OrangeRedTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.orange_red, neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="white", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", button_secondary_text_color="black", button_secondary_text_color_hover="white", button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", slider_color="*secondary_500", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", color_accent_soft="*primary_100", block_label_background_fill="*primary_200", ) orange_red_theme = OrangeRedTheme() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) print("torch.__version__ =", torch.__version__) print("torch.version.cuda =", torch.version.cuda) print("cuda available:", torch.cuda.is_available()) print("cuda device count:", torch.cuda.device_count()) if torch.cuda.is_available(): print("current device:", torch.cuda.current_device()) print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) print("Using device:", device) from diffusers import FlowMatchEulerDiscreteScheduler from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 dtype = torch.bfloat16 pipe = QwenImageEditPlusPipeline.from_pretrained( "Qwen/Qwen-Image-Edit-2509", transformer=QwenImageTransformer2DModel.from_pretrained( "linoyts/Qwen-Image-Edit-Rapid-AIO", subfolder='transformer', torch_dtype=dtype, device_map='cuda' ), torch_dtype=dtype ).to(device) # Apply FA3 Optimization try: pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) print("Flash Attention 3 Processor set successfully.") except Exception as e: print(f"Warning: Could not set FA3 processor: {e}") MAX_SEED = np.iinfo(np.int32).max # Define the config for all adapters ADAPTER_SPECS = { "Photo-to-Anime": { "repo": "autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime", "weights": "Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors", "adapter_name": "anime" }, "Multiple-Angles": { "repo": "dx8152/Qwen-Edit-2509-Multiple-angles", "weights": "镜头转换.safetensors", "adapter_name": "multiple-angles" }, "Light-Restoration": { "repo": "dx8152/Qwen-Image-Edit-2509-Light_restoration", "weights": "移除光影.safetensors", "adapter_name": "light-restoration" }, "Relight": { "repo": "dx8152/Qwen-Image-Edit-2509-Relight", "weights": "Qwen-Edit-Relight.safetensors", "adapter_name": "relight" }, "Multi-Angle-Lighting": { "repo": "dx8152/Qwen-Edit-2509-Multi-Angle-Lighting", "weights": "多角度灯光-251116.safetensors", "adapter_name": "multi-angle-lighting" }, "Edit-Skin": { "repo": "tlennon-ie/qwen-edit-skin", "weights": "qwen-edit-skin_1.1_000002750.safetensors", "adapter_name": "edit-skin" }, "Next-Scene": { "repo": "lovis93/next-scene-qwen-image-lora-2509", "weights": "next-scene_lora-v2-3000.safetensors", "adapter_name": "next-scene" }, "Upscale-Image": { "repo": "vafipas663/Qwen-Edit-2509-Upscale-LoRA", "weights": "qwen-edit-enhance_64-v3_000001000.safetensors", "adapter_name": "upscale-image" } } # Track what is currently loaded in memory LOADED_ADAPTERS = set() def update_dimensions_on_upload(image): if image is None: return 1024, 1024 original_width, original_height = image.size if original_width > original_height: new_width = 1024 aspect_ratio = original_height / original_width new_height = int(new_width * aspect_ratio) else: new_height = 1024 aspect_ratio = original_width / original_height new_width = int(new_height * aspect_ratio) # Ensure dimensions are multiples of 8 new_width = (new_width // 8) * 8 new_height = (new_height // 8) * 8 return new_width, new_height @spaces.GPU def infer( input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True) ): # Cleanup memory before starting gc.collect() torch.cuda.empty_cache() if input_image is None: raise gr.Error("Please upload an image to edit.") # 1. Get Config for Selected Adapter spec = ADAPTER_SPECS.get(lora_adapter) if not spec: raise gr.Error(f"Configuration not found for: {lora_adapter}") adapter_name = spec["adapter_name"] # 2. Lazy Loading Logic if adapter_name not in LOADED_ADAPTERS: print(f"--- Downloading and Loading Adapter: {lora_adapter} ---") try: pipe.load_lora_weights( spec["repo"], weight_name=spec["weights"], adapter_name=adapter_name ) LOADED_ADAPTERS.add(adapter_name) except Exception as e: raise gr.Error(f"Failed to load adapter {lora_adapter}: {e}") else: print(f"--- Adapter {lora_adapter} is already loaded. ---") # 3. Activate the specific adapter # Unload others by exclusively setting this one to weight 1.0 pipe.set_adapters([adapter_name], adapter_weights=[1.0]) # 4. Standard Inference Setup if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry" original_image = input_image.convert("RGB") width, height = update_dimensions_on_upload(original_image) try: result = pipe( image=original_image, prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, generator=generator, true_cfg_scale=guidance_scale, ).images[0] return result, seed except Exception as e: raise e finally: # Cleanup gc.collect() torch.cuda.empty_cache() @spaces.GPU def infer_example(input_image, prompt, lora_adapter): if input_image is None: return None, 0 input_pil = input_image.convert("RGB") guidance_scale = 1.0 steps = 4 result, seed = infer(input_pil, prompt, lora_adapter, 0, True, guidance_scale, steps) return result, seed css=""" #col-container { margin: 0 auto; max-width: 960px; } #main-title h1 {font-size: 2.1em !important;} """ with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# **Qwen-Image-Edit-2509-LoRAs-Fast**", elem_id="main-title") gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2509) adapters for the [Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) model.") with gr.Row(equal_height=True): with gr.Column(): input_image = gr.Image(label="Upload Image", type="pil", height=290) prompt = gr.Text( label="Edit Prompt", show_label=True, placeholder="e.g., transform into anime..", ) run_button = gr.Button("Edit Image", variant="primary") with gr.Column(): output_image = gr.Image(label="Output Image", interactive=False, format="png", height=353) with gr.Row(): # Dynamic keys based on the config dict lora_adapter = gr.Dropdown( label="Choose Editing Style", choices=list(ADAPTER_SPECS.keys()), value="Photo-to-Anime" ) with gr.Accordion("Advanced Settings", open=False, visible=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4) gr.Examples( examples=[ ["examples/1.jpg", "Transform into anime.", "Photo-to-Anime"], ["examples/5.jpg", "Remove shadows and relight the image using soft lighting.", "Light-Restoration"], ["examples/4.jpg", "Use a subtle golden-hour filter with smooth light diffusion.", "Relight"], ["examples/2.jpeg", "Rotate the camera 45 degrees to the left.", "Multiple-Angles"], ["examples/7.jpg", "Light source from the Right Rear", "Multi-Angle-Lighting"], ["examples/10.jpeg", "Upscale the image.", "Upscale-Image"], ["examples/7.jpg", "Light source from the Below", "Multi-Angle-Lighting"], ["examples/2.jpeg", "Switch the camera to a top-down right corner view.", "Multiple-Angles"], ["examples/9.jpg", "The camera moves slightly forward as sunlight breaks through the clouds, casting a soft glow around the character's silhouette in the mist. Realistic cinematic style, atmospheric depth.", "Next-Scene"], ["examples/8.jpg", "Make the subjects skin details more prominent and natural.", "Edit-Skin"], ["examples/6.jpg", "Switch the camera to a bottom-up view.", "Multiple-Angles"], ["examples/6.jpg", "Rotate the camera 180 degrees upside down.", "Multiple-Angles"], ["examples/4.jpg", "Rotate the camera 45 degrees to the right.", "Multiple-Angles"], ["examples/4.jpg", "Switch the camera to a top-down view.", "Multiple-Angles"], ["examples/4.jpg", "Switch the camera to a wide-angle lens.", "Multiple-Angles"], ], inputs=[input_image, prompt, lora_adapter], outputs=[output_image, seed], fn=infer_example, cache_examples=False, label="Examples" ) run_button.click( fn=infer, inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps], outputs=[output_image, seed] ) if __name__ == "__main__": demo.queue(max_size=30).launch(css=css, theme=orange_red_theme, mcp_server=True, ssr_mode=False, show_error=True)