Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,102 +1,250 @@
|
|
| 1 |
import requests
|
| 2 |
from requests.adapters import HTTPAdapter
|
| 3 |
-
from
|
| 4 |
import json
|
| 5 |
import base64
|
| 6 |
import time
|
| 7 |
-
import gradio as gr
|
| 8 |
-
from PIL import Image
|
| 9 |
-
from io import BytesIO
|
| 10 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
"prompt": prompt,
|
| 32 |
-
"
|
| 33 |
-
"
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
job_id = result.get('job_id')
|
| 45 |
-
|
| 46 |
-
if not job_id:
|
| 47 |
-
return None, "Job ID not found."
|
| 48 |
-
|
| 49 |
-
# Polling for job status
|
| 50 |
-
start_time = time.time()
|
| 51 |
-
max_wait_time = 300 # 5 minutes max wait time
|
| 52 |
-
while time.time() - start_time < max_wait_time:
|
| 53 |
-
query_url = f"{host}/v1/generation/query-job?job_id={job_id}&require_step_preview=true"
|
| 54 |
-
response = session.get(query_url, timeout=10)
|
| 55 |
-
job_data = response.json()
|
| 56 |
-
|
| 57 |
-
job_stage = job_data.get("job_stage")
|
| 58 |
-
job_step_preview = job_data.get("job_step_preview")
|
| 59 |
-
job_result = job_data.get("job_result")
|
| 60 |
-
|
| 61 |
-
# If there is a step preview, display it
|
| 62 |
-
if job_step_preview:
|
| 63 |
-
step_image = Image.open(BytesIO(base64.b64decode(job_step_preview)))
|
| 64 |
-
return step_image, "Processing..." # Update the gr.Image widget with step preview
|
| 65 |
-
|
| 66 |
-
# If the job is completed successfully, display the final image
|
| 67 |
-
if job_stage == "SUCCESS":
|
| 68 |
-
final_image_url = job_result[0].get("url")
|
| 69 |
-
if final_image_url:
|
| 70 |
-
final_image_url = final_image_url.replace("127.0.0.1", "18.119.36.46")
|
| 71 |
-
image_response = session.get(final_image_url, timeout=10)
|
| 72 |
-
final_image = Image.open(BytesIO(image_response.content))
|
| 73 |
-
return final_image, "Job completed successfully."
|
| 74 |
-
return None, "Final image URL not found in the job data."
|
| 75 |
-
|
| 76 |
-
# If the job failed
|
| 77 |
-
elif job_stage == "FAILED":
|
| 78 |
-
return None, "Job failed."
|
| 79 |
-
|
| 80 |
-
# If the job is still running, continue polling
|
| 81 |
-
time.sleep(2)
|
| 82 |
-
|
| 83 |
-
return None, "Job timed out."
|
| 84 |
-
|
| 85 |
-
def gradio_app():
|
| 86 |
with gr.Blocks() as demo:
|
| 87 |
-
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
|
| 88 |
with gr.Row():
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import requests
|
| 2 |
from requests.adapters import HTTPAdapter
|
| 3 |
+
from urllib3.util.retry import Retry
|
| 4 |
import json
|
| 5 |
import base64
|
| 6 |
import time
|
|
|
|
|
|
|
|
|
|
| 7 |
import os
|
| 8 |
+
import random
|
| 9 |
+
import io
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
import replicate
|
| 12 |
+
from PIL import Image, ImageOps
|
| 13 |
+
from io import BytesIO
|
| 14 |
|
| 15 |
+
# Load environment variables
|
| 16 |
+
load_dotenv()
|
| 17 |
+
# Constants
|
| 18 |
+
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
|
| 19 |
+
|
| 20 |
+
# Create the tab for the image analyzer
|
| 21 |
+
def image_analyzer_tab():
|
| 22 |
+
# Function to analyze the image
|
| 23 |
+
def analyze_image(image):
|
| 24 |
+
buffered = BytesIO()
|
| 25 |
+
image.save(buffered, format="PNG")
|
| 26 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 27 |
+
analysis = replicate.run(
|
| 28 |
+
"andreasjansson/blip-2:4b32258c42e9efd4288bb9910bc532a69727f9acd26aa08e175713a0a857a608",
|
| 29 |
+
input={"image": "data:image/png;base64," + img_str, "prompt": "what's in this picture?"}
|
| 30 |
+
)
|
| 31 |
+
return analysis
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class Config:
|
| 36 |
+
REPLICATE_API_TOKEN = REPLICATE_API_TOKEN
|
| 37 |
+
|
| 38 |
+
class ImageUtils:
|
| 39 |
+
@staticmethod
|
| 40 |
+
def image_to_base64(image):
|
| 41 |
+
buffered = io.BytesIO()
|
| 42 |
+
image.save(buffered, format="JPEG")
|
| 43 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 44 |
+
|
| 45 |
+
@staticmethod
|
| 46 |
+
def convert_image_mode(image, mode="RGB"):
|
| 47 |
+
if image.mode != mode:
|
| 48 |
+
return image.convert(mode)
|
| 49 |
+
return image
|
| 50 |
+
|
| 51 |
+
def pad_image(image, padding_color=(255, 255, 255)):
|
| 52 |
+
width, height = image.size
|
| 53 |
+
new_width = width + 20
|
| 54 |
+
new_height = height + 20
|
| 55 |
+
result = Image.new(image.mode, (new_width, new_height), padding_color)
|
| 56 |
+
result.paste(image, (10, 10))
|
| 57 |
+
return result
|
| 58 |
+
|
| 59 |
+
def resize_and_pad_image(image, target_width, target_height, padding_color=(255, 255, 255)):
|
| 60 |
+
original_width, original_height = image.size
|
| 61 |
+
aspect_ratio = original_width / original_height
|
| 62 |
+
target_aspect_ratio = target_width / target_height
|
| 63 |
+
|
| 64 |
+
if aspect_ratio > target_aspect_ratio:
|
| 65 |
+
new_width = target_width
|
| 66 |
+
new_height = int(target_width / aspect_ratio)
|
| 67 |
+
else:
|
| 68 |
+
new_width = int(target_height * aspect_ratio)
|
| 69 |
+
new_height = target_height
|
| 70 |
+
|
| 71 |
+
resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)
|
| 72 |
+
padded_image = Image.new(image.mode, (target_width, target_height), padding_color)
|
| 73 |
+
padded_image.paste(resized_image, ((target_width - new_width) // 2, (target_height - new_height) // 2))
|
| 74 |
+
return padded_image
|
| 75 |
+
|
| 76 |
+
def image_prompt(prompt, cn_img1, cn_img2, cn_img3, cn_img4, weight1, weight2, weight3, weight4):
|
| 77 |
+
cn_img1 = pad_image(cn_img1)
|
| 78 |
+
buffered1 = BytesIO()
|
| 79 |
+
cn_img1.save(buffered1, format="PNG")
|
| 80 |
+
cn_img1_base64 = base64.b64encode(buffered1.getvalue()).decode('utf-8')
|
| 81 |
+
|
| 82 |
+
buffered2 = BytesIO()
|
| 83 |
+
cn_img2.save(buffered2, format="PNG")
|
| 84 |
+
cn_img2_base64 = base64.b64encode(buffered2.getvalue()).decode('utf-8')
|
| 85 |
+
|
| 86 |
+
buffered3 = BytesIO()
|
| 87 |
+
cn_img3.save(buffered3, format="PNG")
|
| 88 |
+
cn_img3_base64 = base64.b64encode(buffered3.getvalue()).decode('utf-8')
|
| 89 |
+
|
| 90 |
+
buffered4 = BytesIO()
|
| 91 |
+
cn_img4.save(buffered4, format="PNG")
|
| 92 |
+
cn_img4_base64 = base64.b64encode(buffered4.getvalue()).decode('utf-8')
|
| 93 |
+
|
| 94 |
+
# Resize and pad the sketch input image to match the aspect ratio selection
|
| 95 |
+
aspect_ratio_width, aspect_ratio_height = 1280, 768
|
| 96 |
+
uov_input_image = resize_and_pad_image(cn_img1, aspect_ratio_width, aspect_ratio_height)
|
| 97 |
+
buffered_uov = BytesIO()
|
| 98 |
+
uov_input_image.save(buffered_uov, format="PNG")
|
| 99 |
+
uov_input_image_base64 = base64.b64encode(buffered_uov.getvalue()).decode('utf-8')
|
| 100 |
+
|
| 101 |
+
# Call the Replicate API to generate the image
|
| 102 |
+
fooocus_model = replicate.models.get("vetkastar/fooocus").versions.get("d555a800025fe1c171e386d299b1de635f8d8fc3f1ade06a14faf5154eba50f3")
|
| 103 |
+
image = replicate.predictions.create(version=fooocus_model, input={
|
| 104 |
"prompt": prompt,
|
| 105 |
+
"cn_type1": "PyraCanny",
|
| 106 |
+
"cn_type2": "ImagePrompt",
|
| 107 |
+
"cn_type3": "ImagePrompt",
|
| 108 |
+
"cn_type4": "ImagePrompt",
|
| 109 |
+
"cn_weight1": weight1,
|
| 110 |
+
"cn_weight2": weight2,
|
| 111 |
+
"cn_weight3": weight3,
|
| 112 |
+
"cn_weight4": weight4,
|
| 113 |
+
"cn_img1": "data:image/png;base64," + cn_img1_base64,
|
| 114 |
+
"cn_img2": "data:image/png;base64," + cn_img2_base64,
|
| 115 |
+
"cn_img3": "data:image/png;base64," + cn_img3_base64,
|
| 116 |
+
"cn_img4": "data:image/png;base64," + cn_img4_base64,
|
| 117 |
+
"uov_input_image": "data:image/png;base64," + uov_input_image_base64,
|
| 118 |
+
"sharpness": 2,
|
| 119 |
+
"image_seed": -1,
|
| 120 |
+
"image_number": 1,
|
| 121 |
+
"guidance_scale": 7,
|
| 122 |
+
"refiner_switch": 0.5,
|
| 123 |
+
"negative_prompt": "",
|
| 124 |
+
"inpaint_strength": 0.5,
|
| 125 |
+
"style_selections": "Fooocus V2,Fooocus Enhance,Fooocus Sharp",
|
| 126 |
+
"loras_custom_urls": "",
|
| 127 |
+
"uov_upscale_value": 0,
|
| 128 |
+
"use_default_loras": True,
|
| 129 |
+
"outpaint_selections": "",
|
| 130 |
+
"outpaint_distance_top": 0,
|
| 131 |
+
"performance_selection": "Lightning",
|
| 132 |
+
"outpaint_distance_left": 0,
|
| 133 |
+
"aspect_ratios_selection": "1280*768",
|
| 134 |
+
"outpaint_distance_right": 0,
|
| 135 |
+
"outpaint_distance_bottom": 0,
|
| 136 |
+
"inpaint_additional_prompt": "",
|
| 137 |
+
"uov_method": "Vary (Subtle)"
|
| 138 |
+
})
|
| 139 |
+
image.wait()
|
| 140 |
+
# Fetch the generated image from the output URL
|
| 141 |
+
response = requests.get(image.output["paths"][0])
|
| 142 |
+
img = Image.open(BytesIO(response.content))
|
| 143 |
+
|
| 144 |
+
with open("output.png", "wb") as f:
|
| 145 |
+
f.write(response.content)
|
| 146 |
+
return "output.png", "Job completed successfully using Replicate API."
|
| 147 |
+
|
| 148 |
+
def create_status_image():
|
| 149 |
+
if os.path.exists("output.png"):
|
| 150 |
+
return "output.png"
|
| 151 |
+
else:
|
| 152 |
+
return None
|
| 153 |
+
|
| 154 |
+
def preload_images(cn_img2, cn_img3, cn_img4):
|
| 155 |
+
cn_img2 = f"https://picsum.photos/seed/{random.randint(0, 1000)}/400/400"
|
| 156 |
+
cn_img3 = f"https://picsum.photos/seed/{random.randint(0, 1000)}/400/400"
|
| 157 |
+
cn_img4 = f"https://picsum.photos/seed/{random.randint(0, 1000)}/400/400"
|
| 158 |
+
return cn_img2, cn_img3, cn_img4
|
| 159 |
+
|
| 160 |
+
def shuffle_and_load_images(files):
|
| 161 |
+
if not files:
|
| 162 |
+
return generate_placeholder_image(), generate_placeholder_image(), generate_placeholder_image()
|
| 163 |
+
else:
|
| 164 |
+
random.shuffle(files)
|
| 165 |
+
return files[0], files[1], files[2]
|
| 166 |
+
|
| 167 |
+
def analyze_image(image: Image.Image) -> dict:
|
| 168 |
+
buffered = BytesIO()
|
| 169 |
+
image.save(buffered, format="PNG")
|
| 170 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 171 |
+
analysis = replicate.run(
|
| 172 |
+
"andreasjansson/blip-2:4b32258c42e9efd4288bb9910bc532a69727f9acd26aa08e175713a0a857a608",
|
| 173 |
+
input={"image": "data:image/png;base64," + img_str, "prompt": "what's in this picture?"}
|
| 174 |
)
|
| 175 |
+
return analysis
|
| 176 |
+
|
| 177 |
+
def get_prompt_from_image(image: Image.Image) -> str:
|
| 178 |
+
analysis = analyze_image(image)
|
| 179 |
+
return analysis.get("describe", "")
|
| 180 |
+
|
| 181 |
+
def generate_prompt(image: Image.Image, current_prompt: str) -> str:
|
| 182 |
+
return get_prompt_from_image(image)
|
| 183 |
+
|
| 184 |
+
import gradio as gr
|
| 185 |
|
| 186 |
+
def create_gradio_interface():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
with gr.Blocks() as demo:
|
|
|
|
| 188 |
with gr.Row():
|
| 189 |
+
with gr.Column(scale=0):
|
| 190 |
+
with gr.Tab(label="Sketch"):
|
| 191 |
+
image_input = cn_img1_input = gr.Image(label="Sketch", type="pil")
|
| 192 |
+
weight1 = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.75)
|
| 193 |
+
copy_to_sketch_button = gr.Button("Grab Last Output")
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
with gr.Accordion("Upload Project Files", open=False):
|
| 197 |
+
with gr.Accordion("๐", open=False):
|
| 198 |
+
file_upload = gr.File(file_count="multiple", elem_classes="gradio-column")
|
| 199 |
+
image_gallery = gr.Gallery(label="Image Gallery", elem_classes="gradio-column")
|
| 200 |
+
file_upload.change(shuffle_and_load_images, inputs=[file_upload], outputs=[image_gallery])
|
| 201 |
+
with gr.Column(scale=2):
|
| 202 |
+
with gr.Tab(label="Node"):
|
| 203 |
+
with gr.Accordion("Output"):
|
| 204 |
+
with gr.Column():
|
| 205 |
+
status = gr.Textbox(label="Status")
|
| 206 |
+
status_image = gr.Image(label="Queue Status", interactive=False)
|
| 207 |
+
with gr.Row():
|
| 208 |
+
with gr.Column(scale=1):
|
| 209 |
+
analysis_output = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
|
| 210 |
+
with gr.Column(scale=0):
|
| 211 |
+
analyze_button = gr.Button("Analyze Image")
|
| 212 |
+
analyze_button.click(fn=analyze_image, inputs=image_input, outputs=analysis_output)
|
| 213 |
+
with gr.Row():
|
| 214 |
+
preload_button = gr.Button("๐ธ")
|
| 215 |
+
shuffle_and_load_button = gr.Button("๐")
|
| 216 |
+
generate_button = gr.Button("๐ Generate ๐")
|
| 217 |
+
|
| 218 |
+
with gr.Row():
|
| 219 |
+
with gr.Column():
|
| 220 |
+
cn_img2_input = gr.Image(label="Image Prompt 2", type="pil", height=256)
|
| 221 |
+
weight2 = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5)
|
| 222 |
+
with gr.Column():
|
| 223 |
+
cn_img3_input = gr.Image(label="Image Prompt 3", type="pil", height=256)
|
| 224 |
+
weight3 = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5)
|
| 225 |
+
with gr.Column():
|
| 226 |
+
cn_img4_input = gr.Image(label="Image Prompt 4", type="pil", height=256)
|
| 227 |
+
weight4 = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5)
|
| 228 |
+
|
| 229 |
+
with gr.Row():
|
| 230 |
+
preload_button.click(preload_images, inputs=[cn_img2_input, cn_img3_input, cn_img4_input], outputs=[cn_img2_input, cn_img3_input, cn_img4_input])
|
| 231 |
+
shuffle_and_load_button.click(shuffle_and_load_images, inputs=[file_upload], outputs=[cn_img2_input, cn_img3_input, cn_img4_input])
|
| 232 |
+
|
| 233 |
+
generate_button.click(
|
| 234 |
+
fn=image_prompt,
|
| 235 |
+
inputs=[analysis_output, cn_img1_input, cn_img2_input, cn_img3_input, cn_img4_input, weight1, weight2, weight3, weight4],
|
| 236 |
+
outputs=[status_image, status]
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
copy_to_sketch_button.click(
|
| 240 |
+
fn=lambda: Image.open("output.png") if os.path.exists("output.png") else None,
|
| 241 |
+
inputs=[],
|
| 242 |
+
outputs=[cn_img1_input]
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
# โฒ๏ธ Update the image every 5 seconds
|
| 246 |
+
demo.load(create_status_image, every=5, outputs=status_image)
|
| 247 |
+
|
| 248 |
+
demo.launch(server_name="0.0.0.0", server_port=6644, share=True)
|
| 249 |
+
|
| 250 |
+
create_gradio_interface()
|