Spaces:
Runtime error
Runtime error
Commit
·
0d541e6
1
Parent(s):
ce67727
Add training script, train model, and save pipeline
Browse files
models.py
CHANGED
|
@@ -3,105 +3,200 @@ import pandas as pd
|
|
| 3 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 4 |
from sklearn.naive_bayes import MultinomialNB
|
| 5 |
from sklearn.pipeline import Pipeline
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# --- Constants ---
|
| 11 |
-
MODEL_DIR = Path("saved_models")
|
| 12 |
-
MODEL_PATH = MODEL_DIR / "email_classifier_pipeline.pkl"
|
| 13 |
-
VECTORIZER_PATH = MODEL_DIR / "tfidf_vectorizer.joblib"
|
| 14 |
-
|
| 15 |
-
# Ensure the model directory exists
|
| 16 |
MODEL_DIR.mkdir(parents=True, exist_ok=True)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# --- Model Loading ---
|
| 19 |
-
def
|
| 20 |
"""Loads the trained model pipeline."""
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
if MODEL_PATH.exists() and VECTORIZER_PATH.exists():
|
| 25 |
try:
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
print("Model and vectorizer loaded successfully.")
|
| 29 |
except Exception as e:
|
| 30 |
-
print(f"Error loading model
|
| 31 |
-
# Handle error appropriately, maybe raise it or return None
|
| 32 |
else:
|
| 33 |
-
print(f"Model
|
| 34 |
-
print("Please train and save the model
|
| 35 |
-
|
| 36 |
-
# For this template, we'll proceed with None, API will handle it
|
| 37 |
-
|
| 38 |
-
return model, vectorizer
|
| 39 |
|
| 40 |
# --- Prediction Function ---
|
| 41 |
-
def predict_category(text: str,
|
| 42 |
"""
|
| 43 |
-
Predicts the email category using the loaded model
|
| 44 |
|
| 45 |
Args:
|
| 46 |
text: The masked email text.
|
| 47 |
-
|
| 48 |
-
vectorizer: The loaded text vectorizer.
|
| 49 |
|
| 50 |
Returns:
|
| 51 |
-
The predicted category name (str) or
|
| 52 |
"""
|
| 53 |
-
if not
|
| 54 |
-
return "Error: Model
|
| 55 |
-
|
| 56 |
try:
|
| 57 |
-
# 1. Clean the masked text
|
| 58 |
cleaned_text = clean_text_for_classification(text)
|
| 59 |
|
| 60 |
-
# 2.
|
| 61 |
-
#
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
# 3. Predict using the model
|
| 65 |
-
prediction = model.predict(vectorized_text)
|
| 66 |
|
| 67 |
-
#
|
| 68 |
return prediction[0]
|
|
|
|
| 69 |
except Exception as e:
|
| 70 |
print(f"Error during prediction: {e}")
|
| 71 |
-
return "Error
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
#
|
| 83 |
pipeline = Pipeline([
|
| 84 |
-
('
|
| 85 |
-
('
|
| 86 |
])
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
# Example Usage (if you run this file directly for testing/training)
|
| 102 |
if __name__ == "__main__":
|
| 103 |
-
# This block is for testing or initiating training manually.
|
| 104 |
-
# Create dummy data for demonstration if needed:
|
| 105 |
print("Running models.py directly...")
|
| 106 |
dummy_emails = [
|
| 107 |
"Subject: Billing Issue My account [full_name] was charged twice for order [order_id]. Please refund.",
|
|
@@ -110,17 +205,12 @@ if __name__ == "__main__":
|
|
| 110 |
]
|
| 111 |
dummy_labels = ["Billing Issues", "Technical Support", "Account Management"]
|
| 112 |
|
| 113 |
-
# Uncomment to train a dummy model:
|
| 114 |
-
# print("Training dummy model...")
|
| 115 |
-
# train_and_save_model(dummy_emails, dummy_labels)
|
| 116 |
-
# print("-" * 20)
|
| 117 |
-
|
| 118 |
print("Attempting to load model and predict...")
|
| 119 |
-
|
| 120 |
-
if
|
| 121 |
test_email = "my login is not working help required email [email]"
|
| 122 |
-
category = predict_category(test_email,
|
| 123 |
print(f"Test Email: '{test_email}'")
|
| 124 |
print(f"Predicted Category: {category}")
|
| 125 |
else:
|
| 126 |
-
print("Cannot perform prediction as model
|
|
|
|
| 3 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 4 |
from sklearn.naive_bayes import MultinomialNB
|
| 5 |
from sklearn.pipeline import Pipeline
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from typing import Tuple, Any, Optional, List, Dict
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import re
|
| 10 |
+
from fastapi import FastAPI, HTTPException
|
| 11 |
+
from pydantic import BaseModel
|
| 12 |
+
from utils import clean_text_for_classification, mask_pii
|
| 13 |
+
from models import MODEL_PATH, load_model_pipeline, predict_category
|
| 14 |
|
| 15 |
# --- Constants ---
|
| 16 |
+
MODEL_DIR = Path("saved_models")
|
| 17 |
+
MODEL_PATH = MODEL_DIR / "email_classifier_pipeline.pkl"
|
|
|
|
|
|
|
|
|
|
| 18 |
MODEL_DIR.mkdir(parents=True, exist_ok=True)
|
| 19 |
|
| 20 |
+
# --- FastAPI App ---
|
| 21 |
+
app = FastAPI()
|
| 22 |
+
|
| 23 |
+
# --- Pydantic Models for Request/Response ---
|
| 24 |
+
class EmailInput(BaseModel):
|
| 25 |
+
email_body: str
|
| 26 |
+
|
| 27 |
+
class MaskedEntity(BaseModel):
|
| 28 |
+
position: List[int]
|
| 29 |
+
classification: str
|
| 30 |
+
entity: str
|
| 31 |
+
|
| 32 |
+
class ClassificationOutput(BaseModel):
|
| 33 |
+
input_email_body: str
|
| 34 |
+
list_of_masked_entities: List[MaskedEntity]
|
| 35 |
+
masked_email: str
|
| 36 |
+
category_of_the_email: str
|
| 37 |
+
|
| 38 |
+
# --- Load Model at Startup ---
|
| 39 |
+
# Load the model pipeline once when the application starts
|
| 40 |
+
model_pipeline: Optional[Pipeline] = load_model_pipeline()
|
| 41 |
+
|
| 42 |
# --- Model Loading ---
|
| 43 |
+
def load_model_pipeline() -> Optional[Pipeline]:
|
| 44 |
"""Loads the trained model pipeline."""
|
| 45 |
+
model_pipeline = None
|
| 46 |
+
if MODEL_PATH.exists():
|
|
|
|
|
|
|
| 47 |
try:
|
| 48 |
+
model_pipeline = joblib.load(MODEL_PATH)
|
| 49 |
+
print(f"Model pipeline loaded successfully from {MODEL_PATH}")
|
|
|
|
| 50 |
except Exception as e:
|
| 51 |
+
print(f"Error loading model pipeline from {MODEL_PATH}: {e}")
|
|
|
|
| 52 |
else:
|
| 53 |
+
print(f"Model pipeline not found at {MODEL_PATH}.")
|
| 54 |
+
print("Please train and save the model pipeline first.")
|
| 55 |
+
return model_pipeline
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
# --- Prediction Function ---
|
| 58 |
+
def predict_category(text: str, model_pipeline: Optional[Pipeline]) -> str:
|
| 59 |
"""
|
| 60 |
+
Predicts the email category using the loaded model pipeline.
|
| 61 |
|
| 62 |
Args:
|
| 63 |
text: The masked email text.
|
| 64 |
+
model_pipeline: The loaded classification pipeline.
|
|
|
|
| 65 |
|
| 66 |
Returns:
|
| 67 |
+
The predicted category name (str) or an error string.
|
| 68 |
"""
|
| 69 |
+
if not model_pipeline:
|
| 70 |
+
return "Error: Model Pipeline not loaded"
|
|
|
|
| 71 |
try:
|
| 72 |
+
# 1. Clean the masked text (using the function from utils.py)
|
| 73 |
cleaned_text = clean_text_for_classification(text)
|
| 74 |
|
| 75 |
+
# 2. Predict using the pipeline (handles vectorization internally)
|
| 76 |
+
# model_pipeline.predict expects an iterable (like a list)
|
| 77 |
+
prediction = model_pipeline.predict([cleaned_text])
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
# 3. Return the first prediction
|
| 80 |
return prediction[0]
|
| 81 |
+
|
| 82 |
except Exception as e:
|
| 83 |
print(f"Error during prediction: {e}")
|
| 84 |
+
return "Error: Prediction failed"
|
| 85 |
+
|
| 86 |
+
# --- Training Function ---
|
| 87 |
+
def train_model(data_path: Path, model_save_path: Path):
|
| 88 |
+
"""Loads data, trains the model pipeline, and saves it."""
|
| 89 |
|
| 90 |
+
if not data_path.exists():
|
| 91 |
+
print(f"Error: Dataset not found at {data_path}")
|
| 92 |
+
print("Please make sure the CSV file is uploaded to your Codespace.")
|
| 93 |
+
return
|
| 94 |
|
| 95 |
+
print(f"Loading dataset from {data_path}...")
|
| 96 |
+
try:
|
| 97 |
+
df = pd.read_csv(data_path)
|
| 98 |
+
except Exception as e:
|
| 99 |
+
print(f"Error loading CSV: {e}")
|
| 100 |
+
return
|
| 101 |
+
|
| 102 |
+
# --- Data Validation ---
|
| 103 |
+
email_body_column = 'body' # Column name for email text in your CSV
|
| 104 |
+
category_column = 'category' # Column name for the category label in your CSV
|
| 105 |
+
|
| 106 |
+
if email_body_column not in df.columns:
|
| 107 |
+
print(f"Error: Email body column '{email_body_column}' not found in the dataset.")
|
| 108 |
+
print(f"Available columns: {df.columns.tolist()}")
|
| 109 |
+
return
|
| 110 |
+
if category_column not in df.columns:
|
| 111 |
+
print(f"Error: Category column '{category_column}' not found in the dataset.")
|
| 112 |
+
print(f"Available columns: {df.columns.tolist()}")
|
| 113 |
+
return
|
| 114 |
+
|
| 115 |
+
# Handle potential missing values
|
| 116 |
+
df.dropna(subset=[email_body_column, category_column], inplace=True)
|
| 117 |
+
if df.empty:
|
| 118 |
+
print("Error: No valid data remaining after handling missing values.")
|
| 119 |
+
return
|
| 120 |
+
|
| 121 |
+
print("Applying text cleaning...")
|
| 122 |
+
# Ensure the cleaning function exists and works
|
| 123 |
+
try:
|
| 124 |
+
df['cleaned_text'] = df[email_body_column].astype(str).apply(clean_text_for_classification)
|
| 125 |
+
except Exception as e:
|
| 126 |
+
print(f"Error during text cleaning: {e}")
|
| 127 |
+
return
|
| 128 |
|
| 129 |
+
print("Splitting data...")
|
| 130 |
+
X = df['cleaned_text']
|
| 131 |
+
y = df[category_column]
|
| 132 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 133 |
+
X, y, test_size=0.2, random_state=42, stratify=y # Use stratify for balanced splits
|
| 134 |
+
)
|
| 135 |
|
| 136 |
+
# --- Model Pipeline ---
|
| 137 |
pipeline = Pipeline([
|
| 138 |
+
('tfidf', TfidfVectorizer(stop_words='english', max_df=0.95, min_df=2)),
|
| 139 |
+
('clf', MultinomialNB()) # Using Naive Bayes as a starting point
|
| 140 |
])
|
| 141 |
|
| 142 |
+
print("Training model...")
|
| 143 |
+
try:
|
| 144 |
+
pipeline.fit(X_train, y_train)
|
| 145 |
+
print("Training complete.")
|
| 146 |
+
except Exception as e:
|
| 147 |
+
print(f"Error during model training: {e}")
|
| 148 |
+
return
|
| 149 |
+
|
| 150 |
+
# --- Evaluation ---
|
| 151 |
+
try:
|
| 152 |
+
accuracy = pipeline.score(X_test, y_test)
|
| 153 |
+
print(f"Model Accuracy on Test Set: {accuracy:.4f}")
|
| 154 |
+
except Exception as e:
|
| 155 |
+
print(f"Error during model evaluation: {e}")
|
| 156 |
+
|
| 157 |
|
| 158 |
+
# --- Save Model ---
|
| 159 |
+
print(f"Saving model pipeline to {model_save_path}...")
|
| 160 |
+
model_save_path.parent.mkdir(parents=True, exist_ok=True) # Ensure directory exists
|
| 161 |
+
try:
|
| 162 |
+
joblib.dump(pipeline, model_save_path)
|
| 163 |
+
print("Model pipeline saved successfully.")
|
| 164 |
+
except Exception as e:
|
| 165 |
+
print(f"Error saving model pipeline: {e}")
|
| 166 |
|
| 167 |
+
# --- API Endpoints ---
|
| 168 |
+
@app.get("/")
|
| 169 |
+
def read_root():
|
| 170 |
+
return {"message": "Email Classification API is running. Use the /classify/ endpoint."}
|
| 171 |
+
|
| 172 |
+
@app.post("/classify/", response_model=ClassificationOutput)
|
| 173 |
+
async def classify_email(email_input: EmailInput):
|
| 174 |
+
if model_pipeline is None:
|
| 175 |
+
raise HTTPException(status_code=503, detail="Model not loaded. API is not ready.")
|
| 176 |
+
|
| 177 |
+
input_email = email_input.email_body
|
| 178 |
+
|
| 179 |
+
# 1. Mask PII
|
| 180 |
+
masked_text, masked_entities_list = mask_pii(input_email)
|
| 181 |
+
|
| 182 |
+
# Convert masked_entities_list to list of MaskedEntity objects if needed
|
| 183 |
+
# (Depends on how mask_pii returns it, ensure structure matches Pydantic model)
|
| 184 |
+
formatted_entities = [MaskedEntity(**entity) for entity in masked_entities_list]
|
| 185 |
+
|
| 186 |
+
# 2. Predict Category using the masked text
|
| 187 |
+
predicted_category = predict_category(masked_text, model_pipeline)
|
| 188 |
+
|
| 189 |
+
# 3. Construct and return the response
|
| 190 |
+
response = ClassificationOutput(
|
| 191 |
+
input_email_body=input_email,
|
| 192 |
+
list_of_masked_entities=formatted_entities,
|
| 193 |
+
masked_email=masked_text,
|
| 194 |
+
category_of_the_email=predicted_category
|
| 195 |
+
)
|
| 196 |
+
return response
|
| 197 |
|
| 198 |
# Example Usage (if you run this file directly for testing/training)
|
| 199 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 200 |
print("Running models.py directly...")
|
| 201 |
dummy_emails = [
|
| 202 |
"Subject: Billing Issue My account [full_name] was charged twice for order [order_id]. Please refund.",
|
|
|
|
| 205 |
]
|
| 206 |
dummy_labels = ["Billing Issues", "Technical Support", "Account Management"]
|
| 207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
print("Attempting to load model and predict...")
|
| 209 |
+
model_pipeline = load_model_pipeline()
|
| 210 |
+
if model_pipeline:
|
| 211 |
test_email = "my login is not working help required email [email]"
|
| 212 |
+
category = predict_category(test_email, model_pipeline)
|
| 213 |
print(f"Test Email: '{test_email}'")
|
| 214 |
print(f"Predicted Category: {category}")
|
| 215 |
else:
|
| 216 |
+
print("Cannot perform prediction as model pipeline failed to load.")
|
train.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# filepath: /workspaces/internship1/train.py
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import joblib
|
| 4 |
+
from sklearn.model_selection import train_test_split
|
| 5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 6 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 7 |
+
from sklearn.pipeline import Pipeline
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
# --- Local Imports ---
|
| 11 |
+
# Ensure utils.py has the clean_text_for_classification function
|
| 12 |
+
try:
|
| 13 |
+
from utils import clean_text_for_classification
|
| 14 |
+
except ImportError:
|
| 15 |
+
print("Error: Could not import clean_text_for_classification from utils.")
|
| 16 |
+
print("Make sure utils.py exists and the function is defined.")
|
| 17 |
+
# Define a basic fallback if needed for testing, but fix the import
|
| 18 |
+
def clean_text_for_classification(text: str) -> str:
|
| 19 |
+
return text.lower().strip()
|
| 20 |
+
|
| 21 |
+
# --- Configuration ---
|
| 22 |
+
# !! ADJUST THESE PATHS AND COLUMN NAMES !!
|
| 23 |
+
DATASET_PATH = Path("combined_emails_with_natural_pii.csv")
|
| 24 |
+
MODEL_DIR = Path("saved_models")
|
| 25 |
+
MODEL_PATH = MODEL_DIR / "email_classifier_pipeline.pkl"
|
| 26 |
+
email_body_column = 'email' # <<< Ensure this is 'email'
|
| 27 |
+
category_column = 'type' # <<< Ensure this is 'type'
|
| 28 |
+
|
| 29 |
+
# --- Main Training Function ---
|
| 30 |
+
def train_model(data_path: Path, model_save_path: Path):
|
| 31 |
+
"""Loads data, trains the model pipeline, and saves it."""
|
| 32 |
+
|
| 33 |
+
if not data_path.exists():
|
| 34 |
+
print(f"Error: Dataset not found at {data_path}")
|
| 35 |
+
print("Please make sure the CSV file is uploaded to your Codespace.")
|
| 36 |
+
return
|
| 37 |
+
|
| 38 |
+
print(f"Loading dataset from {data_path}...")
|
| 39 |
+
try:
|
| 40 |
+
# Keep the on_bad_lines='skip' if it worked
|
| 41 |
+
df = pd.read_csv(data_path, engine='python', on_bad_lines='skip')
|
| 42 |
+
print(f"Dataset loaded. Note: Bad lines may have been skipped.")
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"Error loading CSV: {e}")
|
| 45 |
+
return
|
| 46 |
+
|
| 47 |
+
# --- Data Validation ---
|
| 48 |
+
if email_body_column not in df.columns:
|
| 49 |
+
print(f"Error: Email body column '{email_body_column}' not found in the dataset.")
|
| 50 |
+
print(f"Available columns: {df.columns.tolist()}")
|
| 51 |
+
return
|
| 52 |
+
if category_column not in df.columns:
|
| 53 |
+
print(f"Error: Category column '{category_column}' not found in the dataset.")
|
| 54 |
+
print(f"Available columns: {df.columns.tolist()}")
|
| 55 |
+
return
|
| 56 |
+
|
| 57 |
+
# Handle potential missing values
|
| 58 |
+
df.dropna(subset=[email_body_column, category_column], inplace=True)
|
| 59 |
+
if df.empty:
|
| 60 |
+
print("Error: No valid data remaining after handling missing values.")
|
| 61 |
+
return
|
| 62 |
+
|
| 63 |
+
print("Applying text cleaning...")
|
| 64 |
+
# Ensure the cleaning function exists and works
|
| 65 |
+
try:
|
| 66 |
+
df['cleaned_text'] = df[email_body_column].astype(str).apply(clean_text_for_classification)
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"Error during text cleaning: {e}")
|
| 69 |
+
return
|
| 70 |
+
|
| 71 |
+
print("Splitting data...")
|
| 72 |
+
X = df['cleaned_text']
|
| 73 |
+
y = df[category_column]
|
| 74 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 75 |
+
X, y, test_size=0.2, random_state=42, stratify=y # Use stratify for balanced splits
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# --- Model Pipeline ---
|
| 79 |
+
pipeline = Pipeline([
|
| 80 |
+
('tfidf', TfidfVectorizer(stop_words='english', max_df=0.95, min_df=2)),
|
| 81 |
+
('clf', MultinomialNB()) # Using Naive Bayes as a starting point
|
| 82 |
+
])
|
| 83 |
+
|
| 84 |
+
print("Training model...")
|
| 85 |
+
try:
|
| 86 |
+
pipeline.fit(X_train, y_train)
|
| 87 |
+
print("Training complete.")
|
| 88 |
+
except Exception as e:
|
| 89 |
+
print(f"Error during model training: {e}")
|
| 90 |
+
return
|
| 91 |
+
|
| 92 |
+
# --- Evaluation ---
|
| 93 |
+
try:
|
| 94 |
+
accuracy = pipeline.score(X_test, y_test)
|
| 95 |
+
print(f"Model Accuracy on Test Set: {accuracy:.4f}")
|
| 96 |
+
except Exception as e:
|
| 97 |
+
print(f"Error during model evaluation: {e}")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# --- Save Model ---
|
| 101 |
+
print(f"Saving model pipeline to {model_save_path}...")
|
| 102 |
+
model_save_path.parent.mkdir(parents=True, exist_ok=True) # Ensure directory exists
|
| 103 |
+
try:
|
| 104 |
+
joblib.dump(pipeline, model_save_path)
|
| 105 |
+
print("Model pipeline saved successfully.")
|
| 106 |
+
except Exception as e:
|
| 107 |
+
print(f"Error saving model pipeline: {e}")
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# --- Script Execution ---
|
| 111 |
+
if __name__ == "__main__":
|
| 112 |
+
# Make sure the MODEL_DIR exists before calling train_model if needed elsewhere
|
| 113 |
+
MODEL_DIR.mkdir(parents=True, exist_ok=True)
|
| 114 |
+
train_model(DATASET_PATH, MODEL_PATH)
|