Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from functools import partial
|
| 4 |
+
|
| 5 |
+
from matplotlib import pyplot as plt
|
| 6 |
+
from scipy.cluster.hierarchy import dendrogram
|
| 7 |
+
from sklearn.datasets import load_iris
|
| 8 |
+
from sklearn.cluster import AgglomerativeClustering
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
theme = gr.themes.Monochrome(
|
| 12 |
+
primary_hue="indigo",
|
| 13 |
+
secondary_hue="blue",
|
| 14 |
+
neutral_hue="slate",
|
| 15 |
+
)
|
| 16 |
+
model_card = f"""
|
| 17 |
+
## Description
|
| 18 |
+
|
| 19 |
+
This demo shows the plot of the corresponding **Dendrogram of Hierarchical Clustering** using **AgglomerativeClustering** and the dendrogram method on the Iris dataset.
|
| 20 |
+
There are several metrics that use to compute the distance like `euclidean`, `l1`, `l2`, `manhattan`
|
| 21 |
+
You can play around with different ``linkage criterion``. The linkage criterion determines which distance to use between sets of observations.
|
| 22 |
+
Note: If `linkage criterion` is **ward**, only **euclidean** can use
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## Dataset
|
| 26 |
+
|
| 27 |
+
Iris dataset
|
| 28 |
+
"""
|
| 29 |
+
iris = load_iris()
|
| 30 |
+
X = iris.data
|
| 31 |
+
|
| 32 |
+
def iter_grid(n_rows, n_cols):
|
| 33 |
+
# create a grid using gradio Block
|
| 34 |
+
for _ in range(n_rows):
|
| 35 |
+
with gr.Row():
|
| 36 |
+
for _ in range(n_cols):
|
| 37 |
+
with gr.Column():
|
| 38 |
+
yield
|
| 39 |
+
|
| 40 |
+
def plot_dendrogram(linkage_name, metric_name):
|
| 41 |
+
# Create linkage matrix and then plot the dendrogram
|
| 42 |
+
if linkage_name == "ward" and metric_name != "euclidean":
|
| 43 |
+
return None
|
| 44 |
+
# setting distance_threshold=0 ensures we compute the full tree.
|
| 45 |
+
model = AgglomerativeClustering(distance_threshold=0, n_clusters=None, metric=metric_name, linkage=linkage_name)
|
| 46 |
+
|
| 47 |
+
model = model.fit(X)
|
| 48 |
+
|
| 49 |
+
# plot the top three levels of the dendrogram
|
| 50 |
+
|
| 51 |
+
counts = np.zeros(model.children_.shape[0])
|
| 52 |
+
n_samples = len(model.labels_)
|
| 53 |
+
for i, merge in enumerate(model.children_):
|
| 54 |
+
current_count = 0
|
| 55 |
+
for child_idx in merge:
|
| 56 |
+
if child_idx < n_samples:
|
| 57 |
+
current_count += 1 # leaf node
|
| 58 |
+
else:
|
| 59 |
+
current_count += counts[child_idx - n_samples]
|
| 60 |
+
counts[i] = current_count
|
| 61 |
+
|
| 62 |
+
linkage_matrix = np.column_stack(
|
| 63 |
+
[model.children_, model.distances_, counts]
|
| 64 |
+
).astype(float)
|
| 65 |
+
fig, axes = plt.subplots()
|
| 66 |
+
|
| 67 |
+
dn1 = dendrogram(linkage_matrix, ax=axes, truncate_mode="level", p=3)
|
| 68 |
+
# Plot the corresponding dendrogram
|
| 69 |
+
axes.set_title(f"Hierarchical Clustering Dendrogram. Linkage criterion: {metric_name}")
|
| 70 |
+
axes.set_xlabel("Number of points in node (or index of point if no parenthesis).")
|
| 71 |
+
return fig
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
with gr.Blocks(theme=theme) as demo:
|
| 76 |
+
gr.Markdown('''
|
| 77 |
+
<div>
|
| 78 |
+
<h1 style='text-align: center'>Hierarchical Clustering Dendrogram</h1>
|
| 79 |
+
</div>
|
| 80 |
+
''')
|
| 81 |
+
gr.Markdown(model_card)
|
| 82 |
+
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html#sphx-glr-auto-examples-cluster-plot-agglomerative-dendrogram-py\">scikit-learn</a>")
|
| 83 |
+
input_linkage = gr.Radio(choices=["ward", "complete", "average", "single"], value="average", label="Linkage criterion to use")
|
| 84 |
+
metrics = ["euclidean", "l1", "l2", "manhattan"]
|
| 85 |
+
counter = 0
|
| 86 |
+
for _ in iter_grid(2, 2):
|
| 87 |
+
if counter >= len(metrics):
|
| 88 |
+
break
|
| 89 |
+
|
| 90 |
+
input_metric = metrics[counter]
|
| 91 |
+
plot = gr.Plot(label=input_metric)
|
| 92 |
+
fn = partial(plot_dendrogram, metric_name=input_metric)
|
| 93 |
+
input_linkage.change(fn=fn, inputs=[input_linkage], outputs=plot)
|
| 94 |
+
counter += 1
|
| 95 |
+
|
| 96 |
+
demo.launch()
|