Spaces:
Runtime error
Runtime error
File size: 24,155 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
# Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MagpieTTS Inference and Evaluation Script.
This script provides a clean CLI for running MagpieTTS inference with optional evaluation.
It decouples inference and evaluation into separate modules for better maintainability.
Example usage:
# Inference only (from .nemo file) - default behavior
python examples/tts/magpietts_inference.py \\
--nemo_files /path/to/model.nemo \\
--datasets libritts_test_clean \\
--out_dir /path/to/output \\
--codecmodel_path /path/to/codec.nemo
# Inference with evaluation (from checkpoint)
python examples/tts/magpietts_inference.py \\
--hparams_files /path/to/hparams.yaml \\
--checkpoint_files /path/to/model.ckpt \\
--datasets libritts_test_clean,vctk \\
--out_dir /path/to/output \\
--codecmodel_path /path/to/codec.nemo \\
--run_evaluation \\
--num_repeats 3
"""
from __future__ import annotations
import argparse
import copy
import json
import logging
import os
import shutil
from pathlib import Path
from typing import List, Optional, Tuple
import numpy as np
# Import dataset configuration
import nemo.collections.tts.modules.magpietts_inference.evalset_config as evalset_config
from nemo.collections.asr.parts.utils.manifest_utils import read_manifest
# Import the modular components
from nemo.collections.tts.modules.magpietts_inference.evaluation import (
DEFAULT_VIOLIN_METRICS,
STANDARD_METRIC_KEYS,
EvaluationConfig,
compute_mean_with_confidence_interval,
evaluate_generated_audio_dir,
)
from nemo.collections.tts.modules.magpietts_inference.inference import InferenceConfig, MagpieInferenceRunner
from nemo.collections.tts.modules.magpietts_inference.utils import (
ModelLoadConfig,
get_experiment_name_from_checkpoint_path,
load_magpie_model,
)
from nemo.collections.tts.modules.magpietts_inference.visualization import create_combined_box_plot, create_violin_plot
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
logger = logging.getLogger(__name__)
# Default evaluation datasets
EVALUATION_DATASETS = (
"riva_hard_digits,riva_hard_letters,riva_hard_money,riva_hard_short,vctk,libritts_seen,libritts_test_clean"
)
def parse_layer_list(layer_str: Optional[str]) -> Optional[List[int]]:
"""Parse a comma-separated list of layer indices."""
if layer_str is None:
return None
return [int(l.strip()) for l in layer_str.split(",")]
def write_csv_header_if_needed(csv_path: str, header: str) -> None:
"""Write CSV header if file doesn't exist."""
if not os.path.exists(csv_path):
with open(csv_path, "w") as f:
f.write(header + "\n")
def append_metrics_to_csv(csv_path: str, checkpoint_name: str, dataset: str, metrics: dict) -> None:
"""Append metrics to a CSV file."""
values = [
checkpoint_name,
dataset,
metrics.get('cer_filewise_avg', ''),
metrics.get('wer_filewise_avg', ''),
metrics.get('cer_cumulative', ''),
metrics.get('wer_cumulative', ''),
metrics.get('ssim_pred_gt_avg', ''),
metrics.get('ssim_pred_context_avg', ''),
metrics.get('ssim_gt_context_avg', ''),
metrics.get('ssim_pred_gt_avg_alternate', ''),
metrics.get('ssim_pred_context_avg_alternate', ''),
metrics.get('ssim_gt_context_avg_alternate', ''),
metrics.get('cer_gt_audio_cumulative', ''),
metrics.get('wer_gt_audio_cumulative', ''),
metrics.get('utmosv2_avg', ''),
metrics.get('total_gen_audio_seconds', ''),
]
with open(csv_path, "a") as f:
f.write(",".join(str(v) for v in values) + "\n")
logger.info(f"Metrics appended to: {csv_path}")
def create_formatted_metrics_mean_ci(metrics_mean_ci: dict) -> dict:
"""Create formatted metrics mean CI."""
for k, v in metrics_mean_ci.items():
if isinstance(v, list):
mean, ci = float(v[0]), float(v[1])
logging.info(f"Metric {k}: {mean:.4f} ± {ci:.4f}")
metrics_mean_ci[k] = f"{mean:.4f} ± {ci:.4f}"
return metrics_mean_ci
def run_inference_and_evaluation(
model_config: ModelLoadConfig,
inference_config: InferenceConfig,
eval_config: EvaluationConfig,
datasets: List[str],
out_dir: str,
num_repeats: int = 1,
confidence_level: float = 0.95,
violin_plot_metrics: Optional[List[str]] = None,
log_exp_name: bool = False,
clean_up_disk: bool = False,
skip_evaluation: bool = False,
) -> Tuple[Optional[float], Optional[float]]:
"""Run inference and optional evaluation on specified datasets.
Args:
model_config: Configuration for loading the model.
inference_config: Configuration for inference.
eval_config: Configuration for evaluation.
datasets: List of dataset names to evaluate.
out_dir: Output directory for results.
num_repeats: Number of times to repeat inference (for CI estimation).
confidence_level: Confidence level for CI calculation.
violin_plot_metrics: Metrics to include in violin plots.
log_exp_name: Whether to include experiment name in output paths.
clean_up_disk: Whether to clean up output directory after completion.
skip_evaluation: Whether to skip evaluation (inference only mode).
Returns:
Tuple of (mean CER across datasets, mean SSIM across datasets).
"""
if violin_plot_metrics is None:
violin_plot_metrics = list(DEFAULT_VIOLIN_METRICS)
# Remove UTMOSv2 from plots if disabled
if not eval_config.with_utmosv2 and 'utmosv2' in violin_plot_metrics:
violin_plot_metrics.remove('utmosv2')
# Load model
model, checkpoint_name = load_magpie_model(model_config)
# Add experiment name prefix if requested
if log_exp_name and model_config.checkpoint_file:
exp_name = get_experiment_name_from_checkpoint_path(model_config.checkpoint_file)
checkpoint_name = f"{exp_name}__{checkpoint_name}"
# Build full checkpoint identifier
full_checkpoint_name = f"{checkpoint_name}_{inference_config.build_identifier()}_SV_{eval_config.sv_model}"
# Create inference runner
runner = MagpieInferenceRunner(model, inference_config)
# Tracking metrics across datasets
dataset_meta_info = evalset_config.dataset_meta_info
ssim_per_dataset = []
cer_per_dataset = []
all_datasets_filewise_metrics = {}
# CSV headers
csv_header = (
"checkpoint_name,dataset,cer_filewise_avg,wer_filewise_avg,cer_cumulative,"
"wer_cumulative,ssim_pred_gt_avg,ssim_pred_context_avg,ssim_gt_context_avg,"
"ssim_pred_gt_avg_alternate,ssim_pred_context_avg_alternate,"
"ssim_gt_context_avg_alternate,cer_gt_audio_cumulative,wer_gt_audio_cumulative,"
"utmosv2_avg,total_gen_audio_seconds"
)
for dataset in datasets:
logger.info(f"Processing dataset: {dataset}")
if dataset not in dataset_meta_info:
logger.warning(f"Dataset '{dataset}' not found in evalset_config, skipping.")
continue
meta = dataset_meta_info[dataset]
manifest_records = read_manifest(meta['manifest_path'])
language = meta.get('whisper_language', 'en')
# Prepare dataset metadata (remove evaluation-specific keys)
dataset_meta_for_dl = copy.deepcopy(meta)
for key in ["whisper_language", "load_cached_codes_if_available"]:
dataset_meta_for_dl.pop(key, None)
# Setup output directories
eval_dir = os.path.join(out_dir, f"{full_checkpoint_name}_{dataset}")
audio_dir = os.path.join(eval_dir, "audio")
os.makedirs(eval_dir, exist_ok=True)
# Setup CSV files
per_run_csv = os.path.join(eval_dir, "all_experiment_metrics.csv")
write_csv_header_if_needed(per_run_csv, csv_header)
metrics_all_repeats = []
filewise_metrics_all_repeats = []
for repeat_idx in range(num_repeats):
logger.info(f"Repeat {repeat_idx + 1}/{num_repeats} for dataset {dataset}")
repeat_audio_dir = os.path.join(audio_dir, f"repeat_{repeat_idx}")
os.makedirs(repeat_audio_dir, exist_ok=True)
# Create dataset and run inference
test_dataset = runner.create_dataset({dataset: dataset_meta_for_dl})
if len(test_dataset) != len(manifest_records):
raise ValueError(
f"Dataset length mismatch: {len(test_dataset)} vs {len(manifest_records)} manifest records"
)
rtf_metrics_list, generated_paths = runner.run_inference_on_dataset(
dataset=test_dataset,
output_dir=repeat_audio_dir,
manifest_records=manifest_records,
audio_base_dir=meta['audio_dir'],
save_cross_attention_maps=True,
save_context_audio=(repeat_idx == 0), # Only save context audio once
)
# Compute mean RTF metrics
mean_rtf = runner.compute_mean_rtf_metrics(rtf_metrics_list)
with open(os.path.join(eval_dir, f"{dataset}_rtf_metrics_{repeat_idx}.json"), "w") as f:
json.dump(mean_rtf, f, indent=4)
if skip_evaluation:
logger.info("Skipping evaluation as requested.")
continue
# Run evaluation
eval_config_for_dataset = EvaluationConfig(
sv_model=eval_config.sv_model,
asr_model_name=eval_config.asr_model_name,
language=language,
with_utmosv2=eval_config.with_utmosv2,
)
metrics, filewise_metrics = evaluate_generated_audio_dir(
manifest_path=meta['manifest_path'],
audio_dir=meta['audio_dir'],
generated_audio_dir=repeat_audio_dir,
config=eval_config_for_dataset,
)
metrics_all_repeats.append(metrics)
filewise_metrics_all_repeats.extend(filewise_metrics)
# Save metrics
with open(os.path.join(eval_dir, f"{dataset}_metrics_{repeat_idx}.json"), "w") as f:
json.dump(metrics, f, indent=4)
with open(os.path.join(eval_dir, f"{dataset}_filewise_metrics_{repeat_idx}.json"), "w") as f:
json.dump(filewise_metrics, f, indent=4)
# Append to per-run CSV
append_metrics_to_csv(per_run_csv, full_checkpoint_name, dataset, metrics)
# Create violin plot for this repeat
violin_path = Path(eval_dir) / f"{dataset}_violin_{repeat_idx}.png"
create_violin_plot(filewise_metrics, violin_plot_metrics, violin_path)
if skip_evaluation or not metrics_all_repeats:
continue
# Store for combined plot
all_datasets_filewise_metrics[dataset] = filewise_metrics_all_repeats
# Compute mean with confidence interval across repeats
metrics_mean_ci = compute_mean_with_confidence_interval(
metrics_all_repeats,
STANDARD_METRIC_KEYS,
confidence=confidence_level,
)
formatted_metrics_mean_ci = create_formatted_metrics_mean_ci(metrics_mean_ci)
# Write to aggregated CSV
ci_csv = os.path.join(out_dir, "all_experiment_metrics_with_ci.csv")
write_csv_header_if_needed(ci_csv, csv_header)
append_metrics_to_csv(ci_csv, full_checkpoint_name, dataset, formatted_metrics_mean_ci)
# Track per-dataset means
ssim_values = [m['ssim_pred_context_avg'] for m in metrics_all_repeats]
cer_values = [m['cer_cumulative'] for m in metrics_all_repeats]
ssim_per_dataset.append(np.mean(ssim_values))
cer_per_dataset.append(np.mean(cer_values))
# Create combined plot if we have multiple datasets
if len(all_datasets_filewise_metrics) > 1:
combined_plot_path = os.path.join(out_dir, f"{full_checkpoint_name}_combined_violin_plot.png")
create_combined_box_plot(all_datasets_filewise_metrics, violin_plot_metrics, combined_plot_path)
# Clean up if requested
if clean_up_disk:
logger.info(f"Cleaning up output directory: {out_dir}")
shutil.rmtree(out_dir)
# Return averaged metrics
if ssim_per_dataset and cer_per_dataset:
return np.mean(cer_per_dataset), np.mean(ssim_per_dataset)
return None, None
def create_argument_parser() -> argparse.ArgumentParser:
"""Create the CLI argument parser."""
parser = argparse.ArgumentParser(
description='MagpieTTS Inference and Evaluation',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__,
)
# Model loading arguments
model_group = parser.add_argument_group('Model Loading')
model_group.add_argument(
'--hparams_files',
type=str,
default=None,
help='Comma-separated paths to hparams.yaml files (use with --checkpoint_files)',
)
model_group.add_argument(
'--checkpoint_files',
type=str,
default=None,
help='Comma-separated paths to .ckpt files (use with --hparams_files)',
)
model_group.add_argument(
'--nemo_files',
type=str,
default=None,
help='Comma-separated paths to .nemo files (alternative to hparams + checkpoint)',
)
model_group.add_argument(
'--codecmodel_path',
type=str,
required=True,
help='Path to the audio codec model',
)
model_group.add_argument(
'--hparams_file_from_wandb',
action='store_true',
help='Set if hparams file was exported from wandb',
)
model_group.add_argument(
'--legacy_codebooks',
action='store_true',
help='Use legacy codebook indices (for old checkpoints)',
)
model_group.add_argument(
'--legacy_text_conditioning',
action='store_true',
help='Use legacy text conditioning (for old checkpoints)',
)
# Dataset and output arguments
data_group = parser.add_argument_group('Dataset and Output')
data_group.add_argument(
'--datasets',
type=str,
default=None,
help=f'Comma-separated dataset names (default: {EVALUATION_DATASETS})',
)
data_group.add_argument(
'--out_dir',
type=str,
required=True,
help='Output directory for generated audio and metrics',
)
data_group.add_argument(
'--log_exp_name',
action='store_true',
help='Include experiment name in output folder name',
)
data_group.add_argument(
'--clean_up_disk',
action='store_true',
help='Delete output directory after completion',
)
# Inference arguments
infer_group = parser.add_argument_group('Inference Parameters')
infer_group.add_argument('--temperature', type=float, default=0.6)
infer_group.add_argument('--topk', type=int, default=80)
infer_group.add_argument('--batch_size', type=int, default=32)
infer_group.add_argument('--use_cfg', action='store_true', help='Enable classifier-free guidance')
infer_group.add_argument('--cfg_scale', type=float, default=2.5)
# Attention prior arguments
prior_group = parser.add_argument_group('Attention Prior')
prior_group.add_argument('--apply_attention_prior', action='store_true')
prior_group.add_argument('--attention_prior_epsilon', type=float, default=0.1)
prior_group.add_argument('--attention_prior_lookahead_window', type=int, default=5)
prior_group.add_argument(
'--estimate_alignment_from_layers',
type=str,
default=None,
help='Comma-separated layer indices for alignment estimation',
)
prior_group.add_argument(
'--apply_prior_to_layers',
type=str,
default=None,
help='Comma-separated layer indices to apply prior',
)
prior_group.add_argument('--start_prior_after_n_audio_steps', type=int, default=0)
# Local transformer / MaskGit arguments
lt_group = parser.add_argument_group('Local Transformer / MaskGit')
lt_group.add_argument('--use_local_transformer', action='store_true')
lt_group.add_argument('--maskgit_n_steps', type=int, default=3)
lt_group.add_argument('--maskgit_noise_scale', type=float, default=0.0)
lt_group.add_argument('--maskgit_fixed_schedule', type=int, nargs='+', default=None)
lt_group.add_argument(
'--maskgit_sampling_type',
default=None,
choices=["default", "causal", "purity_causal", "purity_default"],
)
# EOS detection
eos_group = parser.add_argument_group('EOS Detection')
eos_group.add_argument(
'--eos_detection_method',
type=str,
default="argmax_or_multinomial_any",
choices=[
"argmax_any",
"argmax_or_multinomial_any",
"argmax_all",
"argmax_or_multinomial_all",
"argmax_zero_cb",
"argmax_or_multinomial_zero_cb",
],
)
eos_group.add_argument('--ignore_finished_sentence_tracking', action='store_true')
# Evaluation arguments
eval_group = parser.add_argument_group('Evaluation')
eval_group.add_argument(
'--run_evaluation',
action='store_true',
help='Run evaluation after inference (default: False, inference only)',
)
eval_group.add_argument('--sv_model', type=str, default="titanet", choices=["titanet", "wavlm"])
eval_group.add_argument('--asr_model_name', type=str, default="nvidia/parakeet-tdt-1.1b")
eval_group.add_argument('--num_repeats', type=int, default=1)
eval_group.add_argument('--confidence_level', type=float, default=0.95)
eval_group.add_argument('--disable_utmosv2', action='store_true')
eval_group.add_argument(
'--violin_plot_metrics',
type=str,
nargs='*',
default=['cer', 'pred_context_ssim', 'utmosv2'],
)
# Quality targets (for CI/CD)
target_group = parser.add_argument_group('Quality Targets')
target_group.add_argument('--cer_target', type=float, default=None)
target_group.add_argument('--ssim_target', type=float, default=None)
return parser
def main():
"""Main entry point."""
parser = create_argument_parser()
args = parser.parse_args()
# Set default datasets if not provided
if args.datasets is None:
args.datasets = EVALUATION_DATASETS
datasets = args.datasets.split(",")
# Determine mode and validate
has_checkpoint_mode = (
args.hparams_files is not None
and args.checkpoint_files is not None
and args.hparams_files != "null"
and args.checkpoint_files != "null"
)
has_nemo_mode = args.nemo_files is not None and args.nemo_files != "null"
if not has_checkpoint_mode and not has_nemo_mode:
parser.error("You must provide either:\n" " 1. --hparams_files and --checkpoint_files\n" " 2. --nemo_files")
# Build configurations
inference_config = InferenceConfig(
temperature=args.temperature,
topk=args.topk,
batch_size=args.batch_size,
use_cfg=args.use_cfg,
cfg_scale=args.cfg_scale,
apply_attention_prior=args.apply_attention_prior,
attention_prior_epsilon=args.attention_prior_epsilon,
attention_prior_lookahead_window=args.attention_prior_lookahead_window,
estimate_alignment_from_layers=parse_layer_list(args.estimate_alignment_from_layers),
apply_prior_to_layers=parse_layer_list(args.apply_prior_to_layers),
start_prior_after_n_audio_steps=args.start_prior_after_n_audio_steps,
use_local_transformer=args.use_local_transformer,
maskgit_n_steps=args.maskgit_n_steps,
maskgit_noise_scale=args.maskgit_noise_scale,
maskgit_fixed_schedule=args.maskgit_fixed_schedule,
maskgit_sampling_type=args.maskgit_sampling_type,
eos_detection_method=args.eos_detection_method,
ignore_finished_sentence_tracking=args.ignore_finished_sentence_tracking,
)
eval_config = EvaluationConfig(
sv_model=args.sv_model,
asr_model_name=args.asr_model_name,
with_utmosv2=not args.disable_utmosv2,
)
cer, ssim = None, None
# Run for each model (checkpoint or nemo)
if has_checkpoint_mode:
hparam_files = args.hparams_files.split(",")
checkpoint_files = args.checkpoint_files.split(",")
if len(hparam_files) != len(checkpoint_files):
parser.error("Number of hparams_files must match number of checkpoint_files")
for hparams_file, checkpoint_file in zip(hparam_files, checkpoint_files):
logger.info(f"Processing checkpoint: {checkpoint_file}")
model_config = ModelLoadConfig(
hparams_file=hparams_file,
checkpoint_file=checkpoint_file,
codecmodel_path=args.codecmodel_path,
legacy_codebooks=args.legacy_codebooks,
legacy_text_conditioning=args.legacy_text_conditioning,
hparams_from_wandb=args.hparams_file_from_wandb,
)
cer, ssim = run_inference_and_evaluation(
model_config=model_config,
inference_config=inference_config,
eval_config=eval_config,
datasets=datasets,
out_dir=args.out_dir,
num_repeats=args.num_repeats,
confidence_level=args.confidence_level,
violin_plot_metrics=args.violin_plot_metrics,
log_exp_name=args.log_exp_name,
clean_up_disk=args.clean_up_disk,
skip_evaluation=not args.run_evaluation,
)
else: # nemo mode
for nemo_file in args.nemo_files.split(","):
logger.info(f"Processing NeMo file: {nemo_file}")
model_config = ModelLoadConfig(
nemo_file=nemo_file,
codecmodel_path=args.codecmodel_path,
legacy_codebooks=args.legacy_codebooks,
legacy_text_conditioning=args.legacy_text_conditioning,
)
cer, ssim = run_inference_and_evaluation(
model_config=model_config,
inference_config=inference_config,
eval_config=eval_config,
datasets=datasets,
out_dir=args.out_dir,
num_repeats=args.num_repeats,
confidence_level=args.confidence_level,
violin_plot_metrics=args.violin_plot_metrics,
log_exp_name=args.log_exp_name,
clean_up_disk=args.clean_up_disk,
skip_evaluation=not args.run_evaluation,
)
# Check quality targets
if cer is not None and args.cer_target is not None:
if cer > args.cer_target:
raise ValueError(f"CER {cer:.4f} exceeds target {args.cer_target:.4f}")
logger.info(f"CER {cer:.4f} meets target {args.cer_target:.4f}")
if ssim is not None and args.ssim_target is not None:
if ssim < args.ssim_target:
raise ValueError(f"SSIM {ssim:.4f} below target {args.ssim_target:.4f}")
logger.info(f"SSIM {ssim:.4f} meets target {args.ssim_target:.4f}")
logger.info("Inference and evaluation completed successfully.")
if __name__ == '__main__':
main()
|