File size: 24,155 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MagpieTTS Inference and Evaluation Script.

This script provides a clean CLI for running MagpieTTS inference with optional evaluation.
It decouples inference and evaluation into separate modules for better maintainability.

Example usage:
    # Inference only (from .nemo file) - default behavior
    python examples/tts/magpietts_inference.py \\
        --nemo_files /path/to/model.nemo \\
        --datasets libritts_test_clean \\
        --out_dir /path/to/output \\
        --codecmodel_path /path/to/codec.nemo

    # Inference with evaluation (from checkpoint)
    python examples/tts/magpietts_inference.py \\
        --hparams_files /path/to/hparams.yaml \\
        --checkpoint_files /path/to/model.ckpt \\
        --datasets libritts_test_clean,vctk \\
        --out_dir /path/to/output \\
        --codecmodel_path /path/to/codec.nemo \\
        --run_evaluation \\
        --num_repeats 3
"""
from __future__ import annotations

import argparse
import copy
import json
import logging
import os
import shutil
from pathlib import Path
from typing import List, Optional, Tuple

import numpy as np

# Import dataset configuration
import nemo.collections.tts.modules.magpietts_inference.evalset_config as evalset_config
from nemo.collections.asr.parts.utils.manifest_utils import read_manifest

# Import the modular components
from nemo.collections.tts.modules.magpietts_inference.evaluation import (
    DEFAULT_VIOLIN_METRICS,
    STANDARD_METRIC_KEYS,
    EvaluationConfig,
    compute_mean_with_confidence_interval,
    evaluate_generated_audio_dir,
)
from nemo.collections.tts.modules.magpietts_inference.inference import InferenceConfig, MagpieInferenceRunner
from nemo.collections.tts.modules.magpietts_inference.utils import (
    ModelLoadConfig,
    get_experiment_name_from_checkpoint_path,
    load_magpie_model,
)
from nemo.collections.tts.modules.magpietts_inference.visualization import create_combined_box_plot, create_violin_plot

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
logger = logging.getLogger(__name__)

# Default evaluation datasets
EVALUATION_DATASETS = (
    "riva_hard_digits,riva_hard_letters,riva_hard_money,riva_hard_short,vctk,libritts_seen,libritts_test_clean"
)


def parse_layer_list(layer_str: Optional[str]) -> Optional[List[int]]:
    """Parse a comma-separated list of layer indices."""
    if layer_str is None:
        return None
    return [int(l.strip()) for l in layer_str.split(",")]


def write_csv_header_if_needed(csv_path: str, header: str) -> None:
    """Write CSV header if file doesn't exist."""
    if not os.path.exists(csv_path):
        with open(csv_path, "w") as f:
            f.write(header + "\n")


def append_metrics_to_csv(csv_path: str, checkpoint_name: str, dataset: str, metrics: dict) -> None:
    """Append metrics to a CSV file."""
    values = [
        checkpoint_name,
        dataset,
        metrics.get('cer_filewise_avg', ''),
        metrics.get('wer_filewise_avg', ''),
        metrics.get('cer_cumulative', ''),
        metrics.get('wer_cumulative', ''),
        metrics.get('ssim_pred_gt_avg', ''),
        metrics.get('ssim_pred_context_avg', ''),
        metrics.get('ssim_gt_context_avg', ''),
        metrics.get('ssim_pred_gt_avg_alternate', ''),
        metrics.get('ssim_pred_context_avg_alternate', ''),
        metrics.get('ssim_gt_context_avg_alternate', ''),
        metrics.get('cer_gt_audio_cumulative', ''),
        metrics.get('wer_gt_audio_cumulative', ''),
        metrics.get('utmosv2_avg', ''),
        metrics.get('total_gen_audio_seconds', ''),
    ]
    with open(csv_path, "a") as f:
        f.write(",".join(str(v) for v in values) + "\n")
    logger.info(f"Metrics appended to: {csv_path}")


def create_formatted_metrics_mean_ci(metrics_mean_ci: dict) -> dict:
    """Create formatted metrics mean CI."""
    for k, v in metrics_mean_ci.items():
        if isinstance(v, list):
            mean, ci = float(v[0]), float(v[1])
            logging.info(f"Metric {k}: {mean:.4f} ± {ci:.4f}")
            metrics_mean_ci[k] = f"{mean:.4f} ± {ci:.4f}"
    return metrics_mean_ci


def run_inference_and_evaluation(
    model_config: ModelLoadConfig,
    inference_config: InferenceConfig,
    eval_config: EvaluationConfig,
    datasets: List[str],
    out_dir: str,
    num_repeats: int = 1,
    confidence_level: float = 0.95,
    violin_plot_metrics: Optional[List[str]] = None,
    log_exp_name: bool = False,
    clean_up_disk: bool = False,
    skip_evaluation: bool = False,
) -> Tuple[Optional[float], Optional[float]]:
    """Run inference and optional evaluation on specified datasets.

    Args:
        model_config: Configuration for loading the model.
        inference_config: Configuration for inference.
        eval_config: Configuration for evaluation.
        datasets: List of dataset names to evaluate.
        out_dir: Output directory for results.
        num_repeats: Number of times to repeat inference (for CI estimation).
        confidence_level: Confidence level for CI calculation.
        violin_plot_metrics: Metrics to include in violin plots.
        log_exp_name: Whether to include experiment name in output paths.
        clean_up_disk: Whether to clean up output directory after completion.
        skip_evaluation: Whether to skip evaluation (inference only mode).

    Returns:
        Tuple of (mean CER across datasets, mean SSIM across datasets).
    """
    if violin_plot_metrics is None:
        violin_plot_metrics = list(DEFAULT_VIOLIN_METRICS)

    # Remove UTMOSv2 from plots if disabled
    if not eval_config.with_utmosv2 and 'utmosv2' in violin_plot_metrics:
        violin_plot_metrics.remove('utmosv2')

    # Load model
    model, checkpoint_name = load_magpie_model(model_config)

    # Add experiment name prefix if requested
    if log_exp_name and model_config.checkpoint_file:
        exp_name = get_experiment_name_from_checkpoint_path(model_config.checkpoint_file)
        checkpoint_name = f"{exp_name}__{checkpoint_name}"

    # Build full checkpoint identifier
    full_checkpoint_name = f"{checkpoint_name}_{inference_config.build_identifier()}_SV_{eval_config.sv_model}"

    # Create inference runner
    runner = MagpieInferenceRunner(model, inference_config)

    # Tracking metrics across datasets
    dataset_meta_info = evalset_config.dataset_meta_info
    ssim_per_dataset = []
    cer_per_dataset = []
    all_datasets_filewise_metrics = {}

    # CSV headers
    csv_header = (
        "checkpoint_name,dataset,cer_filewise_avg,wer_filewise_avg,cer_cumulative,"
        "wer_cumulative,ssim_pred_gt_avg,ssim_pred_context_avg,ssim_gt_context_avg,"
        "ssim_pred_gt_avg_alternate,ssim_pred_context_avg_alternate,"
        "ssim_gt_context_avg_alternate,cer_gt_audio_cumulative,wer_gt_audio_cumulative,"
        "utmosv2_avg,total_gen_audio_seconds"
    )

    for dataset in datasets:
        logger.info(f"Processing dataset: {dataset}")

        if dataset not in dataset_meta_info:
            logger.warning(f"Dataset '{dataset}' not found in evalset_config, skipping.")
            continue

        meta = dataset_meta_info[dataset]
        manifest_records = read_manifest(meta['manifest_path'])
        language = meta.get('whisper_language', 'en')

        # Prepare dataset metadata (remove evaluation-specific keys)
        dataset_meta_for_dl = copy.deepcopy(meta)
        for key in ["whisper_language", "load_cached_codes_if_available"]:
            dataset_meta_for_dl.pop(key, None)

        # Setup output directories
        eval_dir = os.path.join(out_dir, f"{full_checkpoint_name}_{dataset}")
        audio_dir = os.path.join(eval_dir, "audio")
        os.makedirs(eval_dir, exist_ok=True)

        # Setup CSV files
        per_run_csv = os.path.join(eval_dir, "all_experiment_metrics.csv")
        write_csv_header_if_needed(per_run_csv, csv_header)

        metrics_all_repeats = []
        filewise_metrics_all_repeats = []

        for repeat_idx in range(num_repeats):
            logger.info(f"Repeat {repeat_idx + 1}/{num_repeats} for dataset {dataset}")

            repeat_audio_dir = os.path.join(audio_dir, f"repeat_{repeat_idx}")
            os.makedirs(repeat_audio_dir, exist_ok=True)

            # Create dataset and run inference
            test_dataset = runner.create_dataset({dataset: dataset_meta_for_dl})

            if len(test_dataset) != len(manifest_records):
                raise ValueError(
                    f"Dataset length mismatch: {len(test_dataset)} vs {len(manifest_records)} manifest records"
                )

            rtf_metrics_list, generated_paths = runner.run_inference_on_dataset(
                dataset=test_dataset,
                output_dir=repeat_audio_dir,
                manifest_records=manifest_records,
                audio_base_dir=meta['audio_dir'],
                save_cross_attention_maps=True,
                save_context_audio=(repeat_idx == 0),  # Only save context audio once
            )

            # Compute mean RTF metrics
            mean_rtf = runner.compute_mean_rtf_metrics(rtf_metrics_list)
            with open(os.path.join(eval_dir, f"{dataset}_rtf_metrics_{repeat_idx}.json"), "w") as f:
                json.dump(mean_rtf, f, indent=4)

            if skip_evaluation:
                logger.info("Skipping evaluation as requested.")
                continue

            # Run evaluation
            eval_config_for_dataset = EvaluationConfig(
                sv_model=eval_config.sv_model,
                asr_model_name=eval_config.asr_model_name,
                language=language,
                with_utmosv2=eval_config.with_utmosv2,
            )

            metrics, filewise_metrics = evaluate_generated_audio_dir(
                manifest_path=meta['manifest_path'],
                audio_dir=meta['audio_dir'],
                generated_audio_dir=repeat_audio_dir,
                config=eval_config_for_dataset,
            )

            metrics_all_repeats.append(metrics)
            filewise_metrics_all_repeats.extend(filewise_metrics)

            # Save metrics
            with open(os.path.join(eval_dir, f"{dataset}_metrics_{repeat_idx}.json"), "w") as f:
                json.dump(metrics, f, indent=4)

            with open(os.path.join(eval_dir, f"{dataset}_filewise_metrics_{repeat_idx}.json"), "w") as f:
                json.dump(filewise_metrics, f, indent=4)

            # Append to per-run CSV
            append_metrics_to_csv(per_run_csv, full_checkpoint_name, dataset, metrics)

            # Create violin plot for this repeat
            violin_path = Path(eval_dir) / f"{dataset}_violin_{repeat_idx}.png"
            create_violin_plot(filewise_metrics, violin_plot_metrics, violin_path)

        if skip_evaluation or not metrics_all_repeats:
            continue

        # Store for combined plot
        all_datasets_filewise_metrics[dataset] = filewise_metrics_all_repeats

        # Compute mean with confidence interval across repeats
        metrics_mean_ci = compute_mean_with_confidence_interval(
            metrics_all_repeats,
            STANDARD_METRIC_KEYS,
            confidence=confidence_level,
        )

        formatted_metrics_mean_ci = create_formatted_metrics_mean_ci(metrics_mean_ci)

        # Write to aggregated CSV
        ci_csv = os.path.join(out_dir, "all_experiment_metrics_with_ci.csv")
        write_csv_header_if_needed(ci_csv, csv_header)
        append_metrics_to_csv(ci_csv, full_checkpoint_name, dataset, formatted_metrics_mean_ci)

        # Track per-dataset means
        ssim_values = [m['ssim_pred_context_avg'] for m in metrics_all_repeats]
        cer_values = [m['cer_cumulative'] for m in metrics_all_repeats]
        ssim_per_dataset.append(np.mean(ssim_values))
        cer_per_dataset.append(np.mean(cer_values))

    # Create combined plot if we have multiple datasets
    if len(all_datasets_filewise_metrics) > 1:
        combined_plot_path = os.path.join(out_dir, f"{full_checkpoint_name}_combined_violin_plot.png")
        create_combined_box_plot(all_datasets_filewise_metrics, violin_plot_metrics, combined_plot_path)

    # Clean up if requested
    if clean_up_disk:
        logger.info(f"Cleaning up output directory: {out_dir}")
        shutil.rmtree(out_dir)

    # Return averaged metrics
    if ssim_per_dataset and cer_per_dataset:
        return np.mean(cer_per_dataset), np.mean(ssim_per_dataset)
    return None, None


def create_argument_parser() -> argparse.ArgumentParser:
    """Create the CLI argument parser."""
    parser = argparse.ArgumentParser(
        description='MagpieTTS Inference and Evaluation',
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog=__doc__,
    )

    # Model loading arguments
    model_group = parser.add_argument_group('Model Loading')
    model_group.add_argument(
        '--hparams_files',
        type=str,
        default=None,
        help='Comma-separated paths to hparams.yaml files (use with --checkpoint_files)',
    )
    model_group.add_argument(
        '--checkpoint_files',
        type=str,
        default=None,
        help='Comma-separated paths to .ckpt files (use with --hparams_files)',
    )
    model_group.add_argument(
        '--nemo_files',
        type=str,
        default=None,
        help='Comma-separated paths to .nemo files (alternative to hparams + checkpoint)',
    )
    model_group.add_argument(
        '--codecmodel_path',
        type=str,
        required=True,
        help='Path to the audio codec model',
    )
    model_group.add_argument(
        '--hparams_file_from_wandb',
        action='store_true',
        help='Set if hparams file was exported from wandb',
    )
    model_group.add_argument(
        '--legacy_codebooks',
        action='store_true',
        help='Use legacy codebook indices (for old checkpoints)',
    )
    model_group.add_argument(
        '--legacy_text_conditioning',
        action='store_true',
        help='Use legacy text conditioning (for old checkpoints)',
    )

    # Dataset and output arguments
    data_group = parser.add_argument_group('Dataset and Output')
    data_group.add_argument(
        '--datasets',
        type=str,
        default=None,
        help=f'Comma-separated dataset names (default: {EVALUATION_DATASETS})',
    )
    data_group.add_argument(
        '--out_dir',
        type=str,
        required=True,
        help='Output directory for generated audio and metrics',
    )
    data_group.add_argument(
        '--log_exp_name',
        action='store_true',
        help='Include experiment name in output folder name',
    )
    data_group.add_argument(
        '--clean_up_disk',
        action='store_true',
        help='Delete output directory after completion',
    )

    # Inference arguments
    infer_group = parser.add_argument_group('Inference Parameters')
    infer_group.add_argument('--temperature', type=float, default=0.6)
    infer_group.add_argument('--topk', type=int, default=80)
    infer_group.add_argument('--batch_size', type=int, default=32)
    infer_group.add_argument('--use_cfg', action='store_true', help='Enable classifier-free guidance')
    infer_group.add_argument('--cfg_scale', type=float, default=2.5)

    # Attention prior arguments
    prior_group = parser.add_argument_group('Attention Prior')
    prior_group.add_argument('--apply_attention_prior', action='store_true')
    prior_group.add_argument('--attention_prior_epsilon', type=float, default=0.1)
    prior_group.add_argument('--attention_prior_lookahead_window', type=int, default=5)
    prior_group.add_argument(
        '--estimate_alignment_from_layers',
        type=str,
        default=None,
        help='Comma-separated layer indices for alignment estimation',
    )
    prior_group.add_argument(
        '--apply_prior_to_layers',
        type=str,
        default=None,
        help='Comma-separated layer indices to apply prior',
    )
    prior_group.add_argument('--start_prior_after_n_audio_steps', type=int, default=0)

    # Local transformer / MaskGit arguments
    lt_group = parser.add_argument_group('Local Transformer / MaskGit')
    lt_group.add_argument('--use_local_transformer', action='store_true')
    lt_group.add_argument('--maskgit_n_steps', type=int, default=3)
    lt_group.add_argument('--maskgit_noise_scale', type=float, default=0.0)
    lt_group.add_argument('--maskgit_fixed_schedule', type=int, nargs='+', default=None)
    lt_group.add_argument(
        '--maskgit_sampling_type',
        default=None,
        choices=["default", "causal", "purity_causal", "purity_default"],
    )

    # EOS detection
    eos_group = parser.add_argument_group('EOS Detection')
    eos_group.add_argument(
        '--eos_detection_method',
        type=str,
        default="argmax_or_multinomial_any",
        choices=[
            "argmax_any",
            "argmax_or_multinomial_any",
            "argmax_all",
            "argmax_or_multinomial_all",
            "argmax_zero_cb",
            "argmax_or_multinomial_zero_cb",
        ],
    )
    eos_group.add_argument('--ignore_finished_sentence_tracking', action='store_true')

    # Evaluation arguments
    eval_group = parser.add_argument_group('Evaluation')
    eval_group.add_argument(
        '--run_evaluation',
        action='store_true',
        help='Run evaluation after inference (default: False, inference only)',
    )
    eval_group.add_argument('--sv_model', type=str, default="titanet", choices=["titanet", "wavlm"])
    eval_group.add_argument('--asr_model_name', type=str, default="nvidia/parakeet-tdt-1.1b")
    eval_group.add_argument('--num_repeats', type=int, default=1)
    eval_group.add_argument('--confidence_level', type=float, default=0.95)
    eval_group.add_argument('--disable_utmosv2', action='store_true')
    eval_group.add_argument(
        '--violin_plot_metrics',
        type=str,
        nargs='*',
        default=['cer', 'pred_context_ssim', 'utmosv2'],
    )

    # Quality targets (for CI/CD)
    target_group = parser.add_argument_group('Quality Targets')
    target_group.add_argument('--cer_target', type=float, default=None)
    target_group.add_argument('--ssim_target', type=float, default=None)

    return parser


def main():
    """Main entry point."""
    parser = create_argument_parser()
    args = parser.parse_args()

    # Set default datasets if not provided
    if args.datasets is None:
        args.datasets = EVALUATION_DATASETS

    datasets = args.datasets.split(",")

    # Determine mode and validate
    has_checkpoint_mode = (
        args.hparams_files is not None
        and args.checkpoint_files is not None
        and args.hparams_files != "null"
        and args.checkpoint_files != "null"
    )
    has_nemo_mode = args.nemo_files is not None and args.nemo_files != "null"

    if not has_checkpoint_mode and not has_nemo_mode:
        parser.error("You must provide either:\n" "  1. --hparams_files and --checkpoint_files\n" "  2. --nemo_files")

    # Build configurations
    inference_config = InferenceConfig(
        temperature=args.temperature,
        topk=args.topk,
        batch_size=args.batch_size,
        use_cfg=args.use_cfg,
        cfg_scale=args.cfg_scale,
        apply_attention_prior=args.apply_attention_prior,
        attention_prior_epsilon=args.attention_prior_epsilon,
        attention_prior_lookahead_window=args.attention_prior_lookahead_window,
        estimate_alignment_from_layers=parse_layer_list(args.estimate_alignment_from_layers),
        apply_prior_to_layers=parse_layer_list(args.apply_prior_to_layers),
        start_prior_after_n_audio_steps=args.start_prior_after_n_audio_steps,
        use_local_transformer=args.use_local_transformer,
        maskgit_n_steps=args.maskgit_n_steps,
        maskgit_noise_scale=args.maskgit_noise_scale,
        maskgit_fixed_schedule=args.maskgit_fixed_schedule,
        maskgit_sampling_type=args.maskgit_sampling_type,
        eos_detection_method=args.eos_detection_method,
        ignore_finished_sentence_tracking=args.ignore_finished_sentence_tracking,
    )

    eval_config = EvaluationConfig(
        sv_model=args.sv_model,
        asr_model_name=args.asr_model_name,
        with_utmosv2=not args.disable_utmosv2,
    )

    cer, ssim = None, None

    # Run for each model (checkpoint or nemo)
    if has_checkpoint_mode:
        hparam_files = args.hparams_files.split(",")
        checkpoint_files = args.checkpoint_files.split(",")

        if len(hparam_files) != len(checkpoint_files):
            parser.error("Number of hparams_files must match number of checkpoint_files")

        for hparams_file, checkpoint_file in zip(hparam_files, checkpoint_files):
            logger.info(f"Processing checkpoint: {checkpoint_file}")

            model_config = ModelLoadConfig(
                hparams_file=hparams_file,
                checkpoint_file=checkpoint_file,
                codecmodel_path=args.codecmodel_path,
                legacy_codebooks=args.legacy_codebooks,
                legacy_text_conditioning=args.legacy_text_conditioning,
                hparams_from_wandb=args.hparams_file_from_wandb,
            )

            cer, ssim = run_inference_and_evaluation(
                model_config=model_config,
                inference_config=inference_config,
                eval_config=eval_config,
                datasets=datasets,
                out_dir=args.out_dir,
                num_repeats=args.num_repeats,
                confidence_level=args.confidence_level,
                violin_plot_metrics=args.violin_plot_metrics,
                log_exp_name=args.log_exp_name,
                clean_up_disk=args.clean_up_disk,
                skip_evaluation=not args.run_evaluation,
            )

    else:  # nemo mode
        for nemo_file in args.nemo_files.split(","):
            logger.info(f"Processing NeMo file: {nemo_file}")

            model_config = ModelLoadConfig(
                nemo_file=nemo_file,
                codecmodel_path=args.codecmodel_path,
                legacy_codebooks=args.legacy_codebooks,
                legacy_text_conditioning=args.legacy_text_conditioning,
            )

            cer, ssim = run_inference_and_evaluation(
                model_config=model_config,
                inference_config=inference_config,
                eval_config=eval_config,
                datasets=datasets,
                out_dir=args.out_dir,
                num_repeats=args.num_repeats,
                confidence_level=args.confidence_level,
                violin_plot_metrics=args.violin_plot_metrics,
                log_exp_name=args.log_exp_name,
                clean_up_disk=args.clean_up_disk,
                skip_evaluation=not args.run_evaluation,
            )

    # Check quality targets
    if cer is not None and args.cer_target is not None:
        if cer > args.cer_target:
            raise ValueError(f"CER {cer:.4f} exceeds target {args.cer_target:.4f}")
        logger.info(f"CER {cer:.4f} meets target {args.cer_target:.4f}")

    if ssim is not None and args.ssim_target is not None:
        if ssim < args.ssim_target:
            raise ValueError(f"SSIM {ssim:.4f} below target {args.ssim_target:.4f}")
        logger.info(f"SSIM {ssim:.4f} meets target {args.ssim_target:.4f}")

    logger.info("Inference and evaluation completed successfully.")


if __name__ == '__main__':
    main()