Spaces:
Runtime error
Runtime error
File size: 6,013 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example:
pip install qwen_vl_utils && python scripts/vlm/qwen2vl_generate.py --load_from_hf
"""
import argparse
import requests
import torch
from PIL import Image
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor
import nemo.lightning as nl
from nemo.collections.vlm import Qwen2VLConfig2B, Qwen2VLModel
from nemo.utils import logging
def load_image(image_url: str) -> Image.Image:
# pylint: disable=C0115,C0116
try:
response = requests.get(image_url, stream=True)
response.raise_for_status()
image = Image.open(response.raw)
return image
except requests.exceptions.RequestException as e:
print(f"Error loading image from {image_url}: {e}")
return None
def main(args) -> None:
# pylint: disable=C0115,C0116
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=args.tp_size,
pipeline_model_parallel_size=args.pp_size,
ckpt_include_optimizer=False,
)
trainer = nl.Trainer(
devices=args.tp_size * args.pp_size,
max_steps=1000,
accelerator="gpu",
strategy=strategy,
plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
val_check_interval=1000,
limit_val_batches=50,
)
# Tokenize the input texts
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels
# and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory
# usage.
min_pixels = 16 * 28 * 28
max_pixels = 64 * 28 * 28
processor = AutoProcessor.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
)
hf_tokenizer = processor.tokenizer
fabric = trainer.to_fabric()
# Decide whether to import or load the model based on the input arguments
if args.load_from_hf:
model = fabric.import_model("hf://Qwen/Qwen2-VL-2B-Instruct", Qwen2VLModel)
else:
model = Qwen2VLModel(Qwen2VLConfig2B(), model_version="qwen2-vl", tokenizer=hf_tokenizer)
model = fabric.load_model(args.local_model_path, model)
model = model.module.cuda()
model.eval()
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": args.image_url,
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
with torch.no_grad():
input_ids = inputs['input_ids'].clone().to("cuda")
# convert special tokens to nemo image ID
input_ids[input_ids == 151655] = -200
image_grid_thw = inputs['image_grid_thw'].clone().to("cuda")
pixel_values = inputs['pixel_values'].clone().to("cuda")
# Greedy generation loop
generated_ids = input_ids
for _ in range(args.osl):
output = model(
pixel_values=pixel_values,
input_ids=input_ids,
position_ids=None,
attention_mask=None,
image_grid_thw=image_grid_thw,
)
next_token_ids = torch.argmax(output[:, -1], dim=-1, keepdim=True)
generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1)
input_ids = generated_ids
# If the generated token is the end of sequence token, stop generating
if next_token_ids.item() == hf_tokenizer.eos_token_id:
break
generated_ids[generated_ids < 0] = 0
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
generated_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
logging.info("======== GENERATED TEXT OUTPUT ========")
logging.info(f"{args.image_url}, \t\t{generated_texts}")
logging.info("=======================================")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Qwen2VL Multimodal Inference")
parser.add_argument(
"--load_from_hf",
action="store_true",
help="Flag to indicate whether to load the model from Hugging Face hub.",
)
parser.add_argument(
"--local_model_path",
type=str,
default=None,
help="Local path to the model if not loading from Hugging Face.",
)
parser.add_argument(
"--image_url",
type=str,
default="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
help="URL of the image to use for inference.",
)
parser.add_argument('--osl', type=int, default=30, help='output seq length')
parser.add_argument('--tp_size', type=int, default=1, help='tensor parallel size')
parser.add_argument('--pp_size', type=int, default=1, help='pipeline parallel size')
args = parser.parse_args()
main(args)
|