Spaces:
Runtime error
Runtime error
File size: 15,274 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from torch import nn
from nemo.lightning.io.state import StateDictTransform, TransformCTX, state_transform
class TestStateDictTransform:
"""
Tests for the StateDictTransform functionality.
"""
@pytest.fixture
def mock_ctx(self):
"""
Provides a mock transformation context with predefined source and target states.
Returns
-------
TransformCTX: A context object with source and target states.
"""
source_state = {
"model.layers.0.self_attn.q_proj.weight": 1,
"model.layers.0.self_attn.k_proj.weight": 2,
"model.layers.0.self_attn.v_proj.weight": 3,
"model.layers.0.mlp.experts.0.gate_proj.weight": 4,
"model.layers.0.mlp.experts.0.up_proj.weight": 5,
"model.layers.0.mlp.experts.0.down_proj.weight": 8,
"model.layers.0.mlp.experts.1.gate_proj.weight": 6,
"model.layers.0.mlp.experts.1.up_proj.weight": 7,
"model.layers.0.mlp.experts.1.down_proj.weight": 8,
"model.layers.1.self_attn.q_proj.weight": 2,
"model.layers.1.self_attn.k_proj.weight": 3,
"model.layers.1.self_attn.v_proj.weight": 4,
"model.layers.1.mlp.experts.0.gate_proj.weight": 5,
"model.layers.1.mlp.experts.0.up_proj.weight": 6,
"model.layers.1.mlp.experts.0.down_proj.weight": 9,
"model.layers.1.mlp.experts.1.gate_proj.weight": 7,
"model.layers.1.mlp.experts.1.up_proj.weight": 8,
"model.layers.1.mlp.experts.1.down_proj.weight": 9,
}
target_state = {
"decoder.layers.0.self_attention.linear_qkv.weight": -1,
"decoder.layers.0.self_attention.linear_proj.weight": -1,
"decoder.layers.0.mlp.experts.linear_fc1.weight0": -1,
"decoder.layers.0.mlp.experts.linear_fc1.weight1": -1,
"decoder.layers.0.mlp.experts.linear_fc2.weight": -1,
"decoder.layers.1.self_attention.linear_qkv.weight": -1,
"decoder.layers.1.self_attention.linear_proj.weight": -1,
"decoder.layers.1.mlp.experts.linear_fc1.weight0": -1,
"decoder.layers.1.mlp.experts.linear_fc1.weight1": -1,
"decoder.layers.1.mlp.experts.linear_fc2.weight": -1,
}
ctx = TransformCTX(
source=nn.Module(), source_state=source_state, target=nn.Module(), target_state=target_state
)
return ctx
@pytest.fixture
def mock_multi_target_ctx(self):
"""
Provides a mock transformation context with a source state that matches the expected source_key
and a target state prepared with initial values for the expected target_keys.
"""
source_state = {
"decoder.layers.0.mlp.linear_fc1.weight": 1,
"decoder.layers.1.mlp.linear_fc1.weight": 2,
"decoder.layers.2.mlp.experts.linear_fc1.weight0": 23,
"decoder.layers.2.mlp.experts.linear_fc1.weight1": 45,
"decoder.layers.3.mlp.experts.linear_fc1.weight0": 34,
"decoder.layers.3.mlp.experts.linear_fc1.weight1": 56,
}
# Populate target_state with initial placeholder values for keys expected to be matched and updated
target_state = {
"model.layers.0.mlp.gate_proj.weight": -1,
"model.layers.0.mlp.up_proj.weight": -1,
"model.layers.1.mlp.gate_proj.weight": -1,
"model.layers.1.mlp.up_proj.weight": -1,
"model.layers.2.mlp.experts.0.gate_proj.weight": -1,
"model.layers.2.mlp.experts.0.up_proj.weight": -1,
"model.layers.2.mlp.experts.1.gate_proj.weight": -1,
"model.layers.2.mlp.experts.1.up_proj.weight": -1,
"model.layers.3.mlp.experts.0.gate_proj.weight": -1,
"model.layers.3.mlp.experts.0.up_proj.weight": -1,
"model.layers.3.mlp.experts.1.gate_proj.weight": -1,
"model.layers.3.mlp.experts.1.up_proj.weight": -1,
}
ctx = TransformCTX(
source=nn.Module(), source_state=source_state, target=nn.Module(), target_state=target_state
)
return ctx
def test_transform_with_single_source_single_target(self, mock_ctx):
"""
Test transformation when a single source and target key is specified.
"""
transform = StateDictTransform(
source_key="model.layers.*.mlp.experts.0.down_proj.weight",
target_key="decoder.layers.*.mlp.experts.linear_fc2.weight",
transform=lambda ctx, x: x * 100,
)
transform(mock_ctx)
assert mock_ctx.target_state["decoder.layers.0.mlp.experts.linear_fc2.weight"] == 800
assert mock_ctx.target_state["decoder.layers.1.mlp.experts.linear_fc2.weight"] == 900
def test_transform_with_multiple_sources(self, mock_ctx):
"""
Test transformation when multiple source keys are specified.
"""
transform = StateDictTransform(
source_key=(
"model.layers.*.self_attn.q_proj.weight",
"model.layers.*.self_attn.k_proj.weight",
"model.layers.*.self_attn.v_proj.weight",
),
target_key="decoder.layers.*.self_attention.linear_qkv.weight",
transform=lambda ctx, q, k, v: q * 100 + k * 10 + v,
)
transform(mock_ctx)
assert mock_ctx.target_state["decoder.layers.0.self_attention.linear_qkv.weight"] == 123
assert mock_ctx.target_state["decoder.layers.1.self_attention.linear_qkv.weight"] == 234
def test_transform_with_multiple_mapped_sources(self, mock_ctx):
"""
Test transformation with a dictionary mapping for source keys.
"""
transform = StateDictTransform(
source_key={
"q": "model.layers.*.self_attn.q_proj.weight",
"k": "model.layers.*.self_attn.k_proj.weight",
"v": "model.layers.*.self_attn.v_proj.weight",
},
target_key="decoder.layers.*.self_attention.linear_qkv.weight",
transform=lambda ctx, q, k, v: q * 100 + k * 10 + v,
)
transform(mock_ctx)
assert mock_ctx.target_state["decoder.layers.0.self_attention.linear_qkv.weight"] == 123
assert mock_ctx.target_state["decoder.layers.1.self_attention.linear_qkv.weight"] == 234
def test_transform_with_variable_arguments(self, mock_ctx):
"""
Test transformation with a wildcard pattern and variable arguments.
"""
transform = StateDictTransform(
source_key="model.layers.*.self_attn.*_proj.weight",
target_key="decoder.layers.*.self_attention.linear_qkv.weight",
transform=lambda ctx, *args: sum(args),
)
transform(mock_ctx)
assert mock_ctx.target_state["decoder.layers.0.self_attention.linear_qkv.weight"] == 6
assert mock_ctx.target_state["decoder.layers.1.self_attention.linear_qkv.weight"] == 9
def test_transform_with_no_matching_source(self, mock_ctx):
"""
Test transformation when no source keys match the pattern.
"""
transform = StateDictTransform(
source_key="non.existent.pattern",
target_key="decoder.layers.*.self_attention.linear_qkv.weight",
transform=lambda ctx, *args: sum(args),
)
with pytest.raises(ValueError):
transform(mock_ctx)
def test_transform_with_multiple_targets(self, mock_multi_target_ctx):
"""
Test transformation where the target_key is a tuple and the transform function
returns multiple values that are then unrolled to these target keys.
"""
# Define a transformation that splits the input into two parts
def split_transform(ctx, x):
return x - 1, x + 1
# Apply the transformation
transform = StateDictTransform(
source_key="decoder.layers.*.mlp.linear_fc1.weight",
target_key=(
"model.layers.*.mlp.gate_proj.weight",
"model.layers.*.mlp.up_proj.weight",
),
transform=split_transform,
)
transform(mock_multi_target_ctx)
# Check that the target state has been updated correctly
assert mock_multi_target_ctx.target_state["model.layers.0.mlp.gate_proj.weight"] == 0
assert mock_multi_target_ctx.target_state["model.layers.0.mlp.up_proj.weight"] == 2
assert mock_multi_target_ctx.target_state["model.layers.1.mlp.gate_proj.weight"] == 1
assert mock_multi_target_ctx.target_state["model.layers.1.mlp.up_proj.weight"] == 3
def test_transform_with_multiple_sources_multiple_wildcards(self, mock_ctx):
"""
Test transformation when multiple source keys are specified, each with more than 1 wildcard.
"""
transform = StateDictTransform(
source_key=(
"model.layers.*.mlp.experts.*.gate_proj.weight",
"model.layers.*.mlp.experts.*.up_proj.weight",
),
target_key="decoder.layers.*.mlp.experts.linear_fc1.weight*",
transform=lambda ctx, gate, up: gate * 10 + up,
)
transform(mock_ctx)
assert mock_ctx.target_state["decoder.layers.0.mlp.experts.linear_fc1.weight0"] == 45
assert mock_ctx.target_state["decoder.layers.0.mlp.experts.linear_fc1.weight1"] == 67
assert mock_ctx.target_state["decoder.layers.1.mlp.experts.linear_fc1.weight0"] == 56
assert mock_ctx.target_state["decoder.layers.1.mlp.experts.linear_fc1.weight1"] == 78
def test_transform_with_multiple_targets_multiple_wildcards(self, mock_multi_target_ctx):
"""
Test transformation when multiple target keys are specified, each with more than 1 wildcard.
"""
def split_transform(ctx, x):
return x // 10, x % 10
transform = StateDictTransform(
source_key="decoder.layers.*.mlp.experts.linear_fc1.weight*",
target_key=(
"model.layers.*.mlp.experts.*.gate_proj.weight",
"model.layers.*.mlp.experts.*.up_proj.weight",
),
transform=split_transform,
)
transform(mock_multi_target_ctx)
assert mock_multi_target_ctx.target_state["model.layers.2.mlp.experts.0.gate_proj.weight"] == 2
assert mock_multi_target_ctx.target_state["model.layers.2.mlp.experts.0.up_proj.weight"] == 3
assert mock_multi_target_ctx.target_state["model.layers.2.mlp.experts.1.gate_proj.weight"] == 4
assert mock_multi_target_ctx.target_state["model.layers.2.mlp.experts.1.up_proj.weight"] == 5
assert mock_multi_target_ctx.target_state["model.layers.3.mlp.experts.0.gate_proj.weight"] == 3
assert mock_multi_target_ctx.target_state["model.layers.3.mlp.experts.0.up_proj.weight"] == 4
assert mock_multi_target_ctx.target_state["model.layers.3.mlp.experts.1.gate_proj.weight"] == 5
assert mock_multi_target_ctx.target_state["model.layers.3.mlp.experts.1.up_proj.weight"] == 6
def test_transform_with_no_matching_target(self, mock_ctx):
"""
Test transformation when no source keys match the pattern.
"""
transform = StateDictTransform(
source_key="model.layers.*.mlp.experts.0.down_proj.weight",
target_key="non.existent.pattern",
transform=lambda ctx, *args: sum(args),
)
with pytest.raises(ValueError):
transform(mock_ctx)
def test_transform_with_invalid_transform_function(self, mock_ctx):
"""
Test transformation with a transform function that does not match expected signature.
"""
transform = StateDictTransform(
source_key="model.layers.*.self_attn.q_proj.weight",
target_key="decoder.layers.*.self_attention.linear_qkv.weight",
transform=lambda ctx: 0, # Invalid signature
)
with pytest.raises(ValueError):
transform(mock_ctx)
class TestStateTransformDecorator:
"""
Tests for the @state_transform decorator functionality.
"""
@pytest.fixture
def mock_ctx(self):
"""
Provides a mock transformation context with predefined source and target states.
"""
source_state = {
'model.layers.1.self_attn.q_proj.weight': 1,
'model.layers.1.self_attn.k_proj.weight': 2,
'model.layers.1.self_attn.v_proj.weight': 3,
}
# Pre-populate target_state with initial values or placeholders
target_state = {
"decoder.layers.1.self_attention.linear_q.weight": 0,
"decoder.layers.1.self_attention.linear_k.weight": 0,
"decoder.layers.1.self_attention.linear_v.weight": 0,
}
ctx = TransformCTX(
source=nn.Module(), source_state=source_state, target=nn.Module(), target_state=target_state
)
return ctx
def test_single_transform(self, mock_ctx):
"""
Test the @state_transform decorator with a single source and target key.
"""
# Apply the transformation
single_transform(mock_ctx)
# Verify the target state is updated correctly
assert mock_ctx.target_state["decoder.layers.1.self_attention.linear_q.weight"] == 11
def test_multiple_outputs_transform(self, mock_ctx):
"""
Test the @state_transform decorator with a single source key and multiple target keys.
"""
# Apply the transformation
multiple_outputs_transform(mock_ctx)
# Verify the target state is updated correctly for each key
assert mock_ctx.target_state["decoder.layers.1.self_attention.linear_q.weight"] == 1
assert mock_ctx.target_state["decoder.layers.1.self_attention.linear_k.weight"] == 2
assert mock_ctx.target_state["decoder.layers.1.self_attention.linear_v.weight"] == 3
@state_transform(
source_key="model.layers.*.self_attn.q_proj.weight", target_key="decoder.layers.1.self_attention.linear_q.weight"
)
def single_transform(ctx, x):
"""
A single transformation function that adds 10 to the input value.
"""
return x + 10
@state_transform(
source_key="model.layers.1.self_attn.*_proj.weight",
target_key=("decoder.layers.1.self_attention.linear_*.weight",),
)
def multiple_outputs_transform(ctx, *args):
"""
A transformation function that returns multiple values for multiple target keys.
"""
return args
|