Spaces:
Runtime error
Runtime error
File size: 5,794 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import git
from omegaconf import OmegaConf, open_dict
from utils import cal_target_metadata_wer, run_asr_inference
from nemo.collections.asr.parts.utils.eval_utils import cal_write_text_metric, cal_write_wer
from nemo.core.config import hydra_runner
from nemo.utils import logging
"""
This script serves as evaluator of ASR models
Usage:
python asr_evaluator.py \
engine.pretrained_name="stt_en_conformer_transducer_large" \
engine.inference.mode="offline" \
engine.test_ds.augmentor.noise.manifest_path=<manifest file for noise data> \
.....
Check out parameters in ./conf/eval.yaml
"""
@hydra_runner(config_path="conf", config_name="eval.yaml")
def main(cfg):
report = {}
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
# Store git hash for reproducibility
if cfg.env.save_git_hash:
repo = git.Repo(search_parent_directories=True)
report['git_hash'] = repo.head.object.hexsha
## Engine
# Could skip run_asr_inference and use the generated manifest by
# specifying analyst.metric_calculator.exist_pred_manifest
if cfg.analyst.metric_calculator.exist_pred_manifest is None:
# If need to change more parameters for ASR inference, change it in
# 1) shell script in utils.py
# 2) TranscriptionConfig on top of the executed scripts such as transcribe_speech.py in examples/asr
# Note we SKIP calculating wer during asr_inference stage with calculate_wer=False and calculate wer for each sample below
# for more flexibility and reducing possible redundant inference cost.
cfg.engine = run_asr_inference(cfg=cfg.engine)
else:
logging.info(
f"Use generated prediction manifest {cfg.analyst.metric_calculator.exist_pred_manifest} and skip enigneer"
)
with open_dict(cfg):
cfg.engine.output_filename = cfg.analyst.metric_calculator.exist_pred_manifest
## Analyst
if cfg.analyst.metric_calculator.get("metric", "wer") == "wer":
output_manifest_w_wer, total_res, eval_metric = cal_write_wer(
pred_manifest=cfg.engine.output_filename,
gt_text_attr_name=cfg.analyst.metric_calculator.get("gt_text_attr_name", "text"),
pred_text_attr_name=cfg.analyst.metric_calculator.get("pred_text_attr_name", "pred_text"),
clean_groundtruth_text=cfg.analyst.metric_calculator.clean_groundtruth_text,
langid=cfg.analyst.metric_calculator.langid,
use_cer=cfg.analyst.metric_calculator.use_cer,
output_filename=cfg.analyst.metric_calculator.output_filename,
ignore_capitalization=cfg.analyst.metric_calculator.get("ignore_capitalization", False),
ignore_punctuation=cfg.analyst.metric_calculator.get("ignore_punctuation", False),
punctuations=cfg.analyst.metric_calculator.get("punctuations", None),
strip_punc_space=cfg.analyst.metric_calculator.get("strip_punc_space", False),
)
else:
output_manifest_w_wer, total_res, eval_metric = cal_write_text_metric(
pred_manifest=cfg.engine.output_filename,
gt_text_attr_name=cfg.analyst.metric_calculator.get("gt_text_attr_name", "text"),
pred_text_attr_name=cfg.analyst.metric_calculator.get("pred_text_attr_name", "pred_text"),
output_filename=cfg.analyst.metric_calculator.output_filename,
ignore_capitalization=cfg.analyst.metric_calculator.get("ignore_capitalization", False),
ignore_punctuation=cfg.analyst.metric_calculator.get("ignore_punctuation", False),
punctuations=cfg.analyst.metric_calculator.get("punctuations", None),
metric=cfg.analyst.metric_calculator.get("metric", "bleu"),
metric_args=cfg.analyst.metric_calculator.get("metric_args", None),
strip_punc_space=cfg.analyst.metric_calculator.get("strip_punc_space", False),
)
with open_dict(cfg):
cfg.analyst.metric_calculator.output_filename = output_manifest_w_wer
report.update({"res": total_res})
for target in cfg.analyst.metadata:
if cfg.analyst.metadata[target].enable:
occ_avg_wer = cal_target_metadata_wer(
manifest=cfg.analyst.metric_calculator.output_filename,
target=target,
meta_cfg=cfg.analyst.metadata[target],
eval_metric=eval_metric,
)
report[target] = occ_avg_wer
config_engine = OmegaConf.to_object(cfg.engine)
report.update(config_engine)
config_metric_calculator = OmegaConf.to_object(cfg.analyst.metric_calculator)
report.update(config_metric_calculator)
pretty = json.dumps(report, indent=4)
res = "%.3f" % (report["res"][eval_metric] * 100)
logging.info(pretty)
logging.info(f"Overall {eval_metric} is {res} %")
## Writer
report_file = "report.json"
if "report_filename" in cfg.writer and cfg.writer.report_filename:
report_file = cfg.writer.report_filename
with open(report_file, "a") as fout:
json.dump(report, fout)
fout.write('\n')
fout.flush()
if __name__ == "__main__":
main()
|