Spaces:
Runtime error
Runtime error
| # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import lightning.pytorch as pl | |
| import torch | |
| from lightning.pytorch import seed_everything | |
| from omegaconf import OmegaConf | |
| from nemo.collections.asr.models import EncDecSpeakerLabelModel | |
| from nemo.core.config import hydra_runner | |
| from nemo.utils import logging | |
| from nemo.utils.exp_manager import exp_manager | |
| seed_everything(42) | |
| def main(cfg): | |
| logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') | |
| trainer = pl.Trainer(**cfg.trainer) | |
| log_dir = exp_manager(trainer, cfg.get("exp_manager", None)) | |
| speaker_model = EncDecSpeakerLabelModel(cfg=cfg.model, trainer=trainer) | |
| speaker_model.maybe_init_from_pretrained_checkpoint(cfg) | |
| # save labels to file | |
| if log_dir is not None: | |
| with open(os.path.join(log_dir, 'labels.txt'), 'w') as f: | |
| if speaker_model.labels is not None: | |
| for label in speaker_model.labels: | |
| f.write(f'{label}\n') | |
| trainer.fit(speaker_model) | |
| torch.distributed.destroy_process_group() | |
| if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: | |
| if trainer.is_global_zero: | |
| trainer = pl.Trainer(devices=1, accelerator=cfg.trainer.accelerator, strategy=cfg.trainer.strategy) | |
| if speaker_model.prepare_test(trainer): | |
| trainer.test(speaker_model) | |
| if __name__ == '__main__': | |
| main() | |