Spaces:
Runtime error
Runtime error
| name: "spectrogram-enhancer" | |
| model: | |
| n_bands: 80 | |
| latent_dim: 192 | |
| style_depth: 4 | |
| network_capacity: 16 | |
| mixed_prob: 0.9 | |
| fmap_max: 192 | |
| start_from_zero: true # might give better results at downstream tasks | |
| generator: | |
| _target_: "nemo.collections.tts.modules.spectrogram_enhancer.Generator" | |
| n_bands: ${model.n_bands} | |
| latent_dim: ${model.latent_dim} | |
| network_capacity: ${model.network_capacity} | |
| style_depth: ${model.style_depth} | |
| fmap_max: ${model.fmap_max} | |
| discriminator: | |
| _target_: "nemo.collections.tts.modules.spectrogram_enhancer.Discriminator" | |
| n_bands: ${model.n_bands} | |
| network_capacity: ${model.network_capacity} | |
| fmap_max: ${model.fmap_max} | |
| consistency_loss_weight: 10.0 # somewhere in [1., 100.], less for clean datasets, higher for noisier | |
| gradient_penalty_loss_weight: 10.0 # read stylegan papers before changing | |
| gradient_penalty_loss_every_n_steps: 4 | |
| # Spectrogram values range, calculated over your dataset with matching STFT parameters. | |
| # Needed for treating spectrograms as images with pixel values around [0, 1]. | |
| # For LibriTTS, you can try [-13.18, 4.78] | |
| spectrogram_min_value: ??? | |
| spectrogram_max_value: ??? | |
| train_ds: | |
| dataset: | |
| _target_: "nemo.collections.tts.data.dataset.PairedRealFakeSpectrogramsDataset" | |
| manifest_filepath: ??? | |
| dataloader_params: | |
| drop_last: true | |
| shuffle: true | |
| batch_size: 8 | |
| num_workers: 2 | |
| generator_opt: | |
| _target_: torch.optim.Adam | |
| lr: 2e-4 | |
| betas: [0.5, 0.9] | |
| discriminator_opt: | |
| _target_: torch.optim.Adam | |
| lr: 2e-4 | |
| betas: [0.5, 0.9] | |
| trainer: | |
| num_nodes: 1 | |
| devices: 1 | |
| accelerator: gpu | |
| strategy: ddp | |
| precision: 32 | |
| max_epochs: 4 | |
| accumulate_grad_batches: 1 | |
| gradient_clip_val: 1000.0 | |
| log_every_n_steps: 1000 | |
| # we don't really need validation | |
| check_val_every_n_epoch: null | |
| limit_val_batches: 0.0 | |
| benchmark: false | |
| # provided by exp_manager | |
| enable_checkpointing: False | |
| logger: false | |
| exp_manager: | |
| exp_dir: "" | |
| name: ${name} | |
| create_tensorboard_logger: true | |
| create_checkpoint_callback: true | |
| # no good stopping rule, keep every checkpoint | |
| # tune n_epochs for size of your dataset to avoid wasting space | |
| checkpoint_callback_params: | |
| every_n_epochs: 1 | |
| save_on_train_epoch_end: true | |
| save_top_k: -1 | |
| monitor: "g_loss" | |
| resume_if_exists: false | |
| resume_ignore_no_checkpoint: false | |