Spaces:
Runtime error
Runtime error
| # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| import os | |
| import torch | |
| from nemo.collections.diffusion.models.flux.pipeline import FluxInferencePipeline | |
| from nemo.collections.diffusion.utils.flux_pipeline_utils import configs | |
| from nemo.collections.diffusion.utils.mcore_parallel_utils import Utils | |
| def parse_args(): | |
| # pylint: disable=C0116 | |
| parser = argparse.ArgumentParser( | |
| description="The flux inference pipeline is utilizing megatron core transformer.\n" | |
| "Please prepare the necessary checkpoints for flux model on local disk in order to use this script" | |
| ) | |
| parser.add_argument("--flux_ckpt", type=str, default="", help="Path to Flux transformer checkpoint(s)") | |
| parser.add_argument("--vae_ckpt", type=str, default="/ckpts/ae.safetensors", help="Path to \'ae.safetensors\'") | |
| parser.add_argument( | |
| "--clip_version", | |
| type=str, | |
| default='/ckpts/text_encoder', | |
| help="Clip version, provide either ckpt dir or clip version like openai/clip-vit-large-patch14", | |
| ) | |
| parser.add_argument( | |
| "--t5_version", | |
| type=str, | |
| default='/ckpts/text_encoder_2', | |
| help="Clip version, provide either ckpt dir or clip version like google/t5-v1_1-xxl", | |
| ) | |
| parser.add_argument( | |
| "--t5_load_config_only", | |
| action='store_true', | |
| default=False, | |
| help="randomly initialize T5 weights for testing purpose", | |
| ) | |
| parser.add_argument( | |
| "--do_convert_from_hf", | |
| action='store_true', | |
| default=False, | |
| help="Must be true if provided checkpoint is not already converted to NeMo version", | |
| ) | |
| parser.add_argument( | |
| "--save_converted_model_to", | |
| type=str, | |
| default=None, | |
| help="Whether to save the converted NeMo transformer checkpoint for Flux", | |
| ) | |
| parser.add_argument( | |
| "--version", | |
| type=str, | |
| default='dev', | |
| help="Must align with the checkpoint provided.", | |
| ) | |
| parser.add_argument("--height", type=int, default=1024, help="Image height.") | |
| parser.add_argument("--width", type=int, default=1024, help="Image width.") | |
| parser.add_argument("--inference_steps", type=int, default=10, help="Number of inference steps to run.") | |
| parser.add_argument( | |
| "--num_images_per_prompt", type=int, default=1, help="Number of images to generate for each prompt." | |
| ) | |
| parser.add_argument( | |
| "--num_joint_layers", type=int, default=19, help="Number of joint transformer layers in controlnet." | |
| ) | |
| parser.add_argument( | |
| "--num_single_layers", type=int, default=38, help="Number of single transformer layers in controlnet." | |
| ) | |
| parser.add_argument("--guidance", type=float, default=0.0, help="Guidance scale.") | |
| parser.add_argument( | |
| "--offload", action='store_true', default=False, help="Offload modules to cpu after being called." | |
| ) | |
| parser.add_argument( | |
| "--prompts", | |
| type=str, | |
| default="A cat holding a sign that says hello world", | |
| help="Inference prompts, use \',\' to separate if multiple prompts are provided.", | |
| ) | |
| parser.add_argument("--output_path", type=str, default="/tmp/flux_output", help="Path to save inference output.") | |
| args = parser.parse_args() | |
| return args | |
| if __name__ == '__main__': | |
| args = parse_args() | |
| print('Initializing model parallel config') | |
| Utils.initialize_distributed(1, 1, 1) | |
| print('Initializing flux inference pipeline') | |
| params = configs[args.version] | |
| params.vae_config.ckpt = args.vae_ckpt if os.path.exists(args.vae_ckpt) else None | |
| params.clip_params.version = ( | |
| args.clip_version if os.path.exists(args.clip_version) else "openai/clip-vit-large-patch14" | |
| ) | |
| params.t5_params.version = args.t5_version if os.path.exists(args.t5_version) else "google/t5-v1_1-xxl" | |
| params.t5_params.load_config_only = args.t5_load_config_only | |
| params.flux_config.num_joint_layers = args.num_joint_layers | |
| params.flux_config.num_single_layers = args.num_single_layers | |
| pipe = FluxInferencePipeline(params) | |
| if os.path.exists(args.flux_ckpt): | |
| print('Loading transformer weights') | |
| pipe.load_from_pretrained( | |
| args.flux_ckpt, | |
| do_convert_from_hf=args.do_convert_from_hf, | |
| save_converted_model_to=args.save_converted_model_to, | |
| ) | |
| dtype = torch.float32 | |
| text = args.prompts.split(',') | |
| pipe( | |
| text, | |
| max_sequence_length=512, | |
| height=args.height, | |
| width=args.width, | |
| num_inference_steps=args.inference_steps, | |
| num_images_per_prompt=args.num_images_per_prompt, | |
| offload=args.offload, | |
| guidance_scale=args.guidance, | |
| dtype=dtype, | |
| output_path=args.output_path, | |
| ) | |