subhankarg's picture
Upload folder using huggingface_hub
0558aa4 verified
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import sys
import time
from pathlib import Path
import numpy as np
import scipy.io.wavfile as wav
import torch
from joblib import Parallel, delayed
from tqdm import tqdm
from utils import get_segments
import nemo.collections.asr as nemo_asr
from nemo.collections.asr.models.ctc_models import EncDecCTCModel
from nemo.collections.asr.models.hybrid_rnnt_ctc_models import EncDecHybridRNNTCTCModel
parser = argparse.ArgumentParser(description="CTC Segmentation")
parser.add_argument("--output_dir", default="output", type=str, help="Path to output directory")
parser.add_argument(
"--data",
type=str,
required=True,
help="Path to directory with audio files and associated transcripts (same respective names only formats are "
"different or path to wav file (transcript should have the same base name and be located in the same folder"
"as the wav file.",
)
parser.add_argument("--window_len", type=int, default=8000, help="Window size for ctc segmentation algorithm")
parser.add_argument("--sample_rate", type=int, default=16000, help="Sampling rate, Hz")
parser.add_argument(
"--model", type=str, default="QuartzNet15x5Base-En", help="Path to model checkpoint or pre-trained model name",
)
parser.add_argument("--debug", action="store_true", help="Flag to enable debugging messages")
parser.add_argument(
"--num_jobs",
default=-2,
type=int,
help="The maximum number of concurrently running jobs, `-2` - all CPUs but one are used",
)
logger = logging.getLogger("ctc_segmentation") # use module name
if __name__ == "__main__":
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
# setup logger
log_dir = os.path.join(args.output_dir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"ctc_segmentation_{args.window_len}.log")
if os.path.exists(log_file):
os.remove(log_file)
level = "DEBUG" if args.debug else "INFO"
logger = logging.getLogger("CTC")
file_handler = logging.FileHandler(filename=log_file)
stdout_handler = logging.StreamHandler(sys.stdout)
handlers = [file_handler, stdout_handler]
logging.basicConfig(handlers=handlers, level=level)
if os.path.exists(args.model):
asr_model = nemo_asr.models.ASRModel.restore_from(args.model)
else:
asr_model = nemo_asr.models.ASRModel.from_pretrained(args.model, strict=False)
if not (isinstance(asr_model, EncDecCTCModel) or isinstance(asr_model, EncDecHybridRNNTCTCModel)):
raise NotImplementedError(
f"Model is not an instance of NeMo EncDecCTCModel or ENCDecHybridRNNTCTCModel."
" Currently only instances of these models are supported"
)
bpe_model = isinstance(asr_model, nemo_asr.models.EncDecCTCModelBPE) or isinstance(
asr_model, nemo_asr.models.EncDecHybridRNNTCTCBPEModel
)
# get tokenizer used during training, None for char based models
if bpe_model:
tokenizer = asr_model.tokenizer
else:
tokenizer = None
if isinstance(asr_model, EncDecHybridRNNTCTCModel):
asr_model.change_decoding_strategy(decoder_type="ctc")
# extract ASR vocabulary and add blank symbol
if hasattr(asr_model, 'tokenizer'): # i.e. tokenization is BPE-based
vocabulary = asr_model.tokenizer.vocab
elif hasattr(asr_model.decoder, "vocabulary"): # i.e. tokenization is character-based
vocabulary = asr_model.cfg.decoder.vocabulary
else:
raise ValueError("Unexpected model type. Vocabulary list not found.")
vocabulary = ["ε"] + list(vocabulary)
logging.debug(f"ASR Model vocabulary: {vocabulary}")
data = Path(args.data)
output_dir = Path(args.output_dir)
if os.path.isdir(data):
audio_paths = data.glob("*.wav")
data_dir = data
else:
audio_paths = [Path(data)]
data_dir = Path(os.path.dirname(data))
all_log_probs = []
all_transcript_file = []
all_segment_file = []
all_wav_paths = []
segments_dir = os.path.join(args.output_dir, "segments")
os.makedirs(segments_dir, exist_ok=True)
index_duration = None
for path_audio in audio_paths:
logging.info(f"Processing {path_audio.name}...")
transcript_file = os.path.join(data_dir, path_audio.name.replace(".wav", ".txt"))
segment_file = os.path.join(
segments_dir, f"{args.window_len}_" + path_audio.name.replace(".wav", "_segments.txt")
)
if not os.path.exists(transcript_file):
logging.info(f"{transcript_file} not found. Skipping {path_audio.name}")
continue
try:
sample_rate, signal = wav.read(path_audio)
if len(signal) == 0:
logging.error(f"Skipping {path_audio.name}")
continue
assert (
sample_rate == args.sample_rate
), f"Sampling rate of the audio file {path_audio} doesn't match --sample_rate={args.sample_rate}"
original_duration = len(signal) / sample_rate
logging.debug(f"len(signal): {len(signal)}, sr: {sample_rate}")
logging.debug(f"Duration: {original_duration}s, file_name: {path_audio}")
hypotheses = asr_model.transcribe([str(path_audio)], batch_size=1, return_hypotheses=True)
# if hypotheses form a tuple (from Hybrid model), extract just "best" hypothesis
if type(hypotheses) == tuple and len(hypotheses) == 2:
hypotheses = hypotheses[0]
log_probs = hypotheses[
0
].alignments # note: "[0]" is for batch dimension unpacking (and here batch size=1)
# move blank values to the first column (ctc-package compatibility)
blank_col = log_probs[:, -1].reshape((log_probs.shape[0], 1))
log_probs = np.concatenate((blank_col, log_probs[:, :-1]), axis=1)
all_log_probs.append(log_probs)
all_segment_file.append(str(segment_file))
all_transcript_file.append(str(transcript_file))
all_wav_paths.append(path_audio)
if index_duration is None:
index_duration = len(signal) / log_probs.shape[0] / sample_rate
except Exception as e:
logging.error(e)
logging.error(f"Skipping {path_audio.name}")
continue
asr_model_type = type(asr_model)
del asr_model
torch.cuda.empty_cache()
if len(all_log_probs) > 0:
start_time = time.time()
normalized_lines = Parallel(n_jobs=args.num_jobs)(
delayed(get_segments)(
all_log_probs[i],
all_wav_paths[i],
all_transcript_file[i],
all_segment_file[i],
vocabulary,
tokenizer,
bpe_model,
index_duration,
args.window_len,
log_file=log_file,
debug=args.debug,
)
for i in tqdm(range(len(all_log_probs)))
)
total_time = time.time() - start_time
logger.info(f"Total execution time: ~{round(total_time/60)}min")
logger.info(f"Saving logs to {log_file}")
if os.path.exists(log_file):
with open(log_file, "r") as f:
lines = f.readlines()