# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nemo_run as run from nemo.collections import llm from nemo.collections.llm.recipes import llama3_8b, llama3_70b def custom_llama3_8b(): pretrain = llama3_8b.pretrain_recipe(num_nodes=1, num_gpus_per_node=8) pretrain.trainer.val_check_interval = 400 pretrain.log.ckpt.save_top_k = -1 pretrain.log.ckpt.every_n_train_steps = 400 pretrain.trainer.max_steps = 1000 return pretrain def custom_llama3_70b(): pretrain = llama3_70b.pretrain_recipe(num_nodes=1, num_gpus_per_node=8) pretrain.trainer.val_check_interval = 400 pretrain.log.ckpt.save_top_k = -1 pretrain.log.ckpt.every_n_train_steps = 400 pretrain.trainer.max_steps = 1000 return pretrain if __name__ == "__main__": # When running this file, it will run the `custom_llama3_8b` recipe # To select the `custom_llama3_70b` recipe, use the following command: # python custom_recipe.py --factory custom_llama3_70b # This will automatically call the custom_llama3_70b that's defined above # Note that any parameter can be overwritten by using the following syntax: # python custom_recipe.py trainer.max_steps=2000 # You can even apply transformations when triggering the CLI as if it's python code # python custom_recipe.py "trainer.max_steps*=2" run.cli.main(llm.pretrain, default_factory=custom_llama3_8b)