# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest.mock import MagicMock import pytest import torch from nemo.lightning.io.hf import HFCheckpointIO @pytest.fixture def mock_model(): model = MagicMock() model.save_pretrained = MagicMock() model.load_pretrained = MagicMock(return_value={'mock_state_dict': torch.tensor([1.0])}) return model @pytest.fixture def checkpoint_io(mock_model, tmp_path): return HFCheckpointIO(model=mock_model, adapter_only=False) @pytest.fixture def adapter_checkpoint_io(mock_model, tmp_path): return HFCheckpointIO(model=mock_model, adapter_only=True) def save_and_load_checkpoint(checkpoint_io, checkpoint, path, adapter_only=False): try: if adapter_only: adapter_path = path / "hf_adapter" adapter_path.mkdir(parents=True, exist_ok=True) (adapter_path / "adapter_config.json").write_text('{}') checkpoint_io.save_checkpoint(checkpoint, path) assert (path / "trainer.pt").exists() loaded_checkpoint = checkpoint_io.load_checkpoint(path) assert 'state_dict' in loaded_checkpoint finally: for subdir in path.iterdir(): if subdir.is_dir(): for file in subdir.iterdir(): file.unlink() subdir.rmdir() else: subdir.unlink() path.rmdir() def test_save_and_load_checkpoint(checkpoint_io, tmp_path): checkpoint = {'state_dict': {'layer.weight': torch.tensor([1.0])}} path = tmp_path / "checkpoint" save_and_load_checkpoint(checkpoint_io, checkpoint, path) def test_save_and_load_checkpoint_adapter_only(adapter_checkpoint_io, tmp_path): checkpoint = {'state_dict': {'model.model.lora_a.weight': torch.tensor([1.0])}} path = tmp_path / "checkpoint" save_and_load_checkpoint(adapter_checkpoint_io, checkpoint, path, adapter_only=True) def test_remove_checkpoint(checkpoint_io, tmp_path): path = tmp_path / "checkpoint" path.mkdir() (path / "trainer.pt").touch() checkpoint_io.remove_checkpoint(path) assert not path.exists()