Incentivizing Permissionless Distributed Learning of LLMs
Paper
•
2505.21684
•
Published
•
1
A 1.2B-parameter causal language model trained with Gauntlet, an incentive system that rewards permissionless contributors for useful pseudo-gradients on the Bittensor network. [Paper]
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "tplr/TEMPLAR-I"
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
| Model | Dataset | Tokens | HellaSwag (acc_norm) | PIQA (acc_norm) | ARC-E (acc) |
|---|---|---|---|---|---|
| TEMPLAR-1B | FineWebEdu | 100B–200B | 51.0 | 71.4 | 59.2 |
| DeMo 1B [12] | Dolmo | 100B | 48.0 | 70.0 | 55.0 |
| AdamW DDP 1B | FineWebEdu | 120B | 51.0 | 71.9 | 58.9 |
If you use this model or Gauntlet, please cite it as follows:
@article{lidin2025incentivizing,
title={Incentivizing Permissionless Distributed Learning of LLMs},
author={Lidin, Joel and Sarfi, Amir and Pappas, Evangelos and Dare, Samuel and Belilovsky, Eugene and Steeves, Jacob},
journal={arXiv preprint arXiv:2505.21684},
year={2025}
}