SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base on the quora-duplicates dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-distilbert-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("CalebR84/stsb-distilbert-base-ocl")
sentences = [
'How can I lose weight quickly? Need serious help.',
'How can you lose weight really quick?',
'Why are there so many half-built, abandoned buildings in Mexico?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.866 |
| cosine_accuracy_threshold |
0.786 |
| cosine_f1 |
0.8321 |
| cosine_f1_threshold |
0.7849 |
| cosine_precision |
0.7812 |
| cosine_recall |
0.8901 |
| cosine_ap |
0.8773 |
| cosine_mcc |
0.7256 |
Paraphrase Mining
| Metric |
Value |
| average_precision |
0.6393 |
| f1 |
0.6435 |
| precision |
0.6447 |
| recall |
0.6424 |
| threshold |
0.8727 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.9172 |
| cosine_accuracy@3 |
0.9588 |
| cosine_accuracy@5 |
0.9672 |
| cosine_accuracy@10 |
0.9762 |
| cosine_precision@1 |
0.9172 |
| cosine_precision@3 |
0.4102 |
| cosine_precision@5 |
0.2644 |
| cosine_precision@10 |
0.1406 |
| cosine_recall@1 |
0.7869 |
| cosine_recall@3 |
0.9198 |
| cosine_recall@5 |
0.9442 |
| cosine_recall@10 |
0.9641 |
| cosine_ndcg@10 |
0.9388 |
| cosine_mrr@10 |
0.9393 |
| cosine_map@100 |
0.9258 |
Training Details
Training Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 100,000 training samples
- Columns:
sentence1, sentence2, and label
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
label |
| type |
string |
string |
int |
| details |
- min: 6 tokens
- mean: 15.56 tokens
- max: 62 tokens
|
- min: 6 tokens
- mean: 15.73 tokens
- max: 84 tokens
|
|
- Samples:
| sentence1 |
sentence2 |
label |
What are some of the greatest books not adapted into film yet? |
What book should be made into a movie? |
0 |
How can I increase my communication skills? |
How we improve our communication skills? |
1 |
Heymen I have a note5 it give me this message when a turn it on and shout down (custom pinary are blocked by frp lock) I try odin and kies butnot work? |
Setup dubbing studio with very less budget in India? |
0 |
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 1,000 evaluation samples
- Columns:
sentence1, sentence2, and label
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
label |
| type |
string |
string |
int |
| details |
- min: 3 tokens
- mean: 15.37 tokens
- max: 62 tokens
|
- min: 6 tokens
- mean: 15.63 tokens
- max: 78 tokens
|
|
- Samples:
| sentence1 |
sentence2 |
label |
Which is the best book to learn data structures and algorithms? |
Which book is the best book for algorithm and datastructure? |
1 |
Does modafinil shows up on a drug test? Because my urine smells a lot of medicine? |
Can Modafinil come out in a drug test? |
0 |
Does the size of a penis matter? |
Does penis size matters for girls? |
1 |
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
num_train_epochs: 10
warmup_ratio: 0.1
fp16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
Validation Loss |
quora-duplicates_cosine_ap |
quora-duplicates-dev_average_precision |
cosine_ndcg@10 |
| 0 |
0 |
- |
- |
0.6905 |
0.4200 |
0.9397 |
| 0.0640 |
100 |
2.6402 |
- |
- |
- |
- |
| 0.1280 |
200 |
2.4398 |
- |
- |
- |
- |
| 0.1599 |
250 |
- |
2.4217 |
0.7392 |
0.4765 |
0.9426 |
| 0.1919 |
300 |
2.2461 |
- |
- |
- |
- |
| 0.2559 |
400 |
2.1433 |
- |
- |
- |
- |
| 0.3199 |
500 |
2.0417 |
2.1120 |
0.7970 |
0.4566 |
0.9429 |
| 0.3839 |
600 |
2.0441 |
- |
- |
- |
- |
| 0.4479 |
700 |
1.8907 |
- |
- |
- |
- |
| 0.4798 |
750 |
- |
2.0011 |
0.8229 |
0.4820 |
0.9468 |
| 0.5118 |
800 |
1.8985 |
- |
- |
- |
- |
| 0.5758 |
900 |
1.7521 |
- |
- |
- |
- |
| 0.6398 |
1000 |
1.8888 |
1.8010 |
0.8382 |
0.4925 |
0.9425 |
| 0.7038 |
1100 |
1.8524 |
- |
- |
- |
- |
| 0.7678 |
1200 |
1.6956 |
- |
- |
- |
- |
| 0.7997 |
1250 |
- |
1.8004 |
0.8438 |
0.4283 |
0.9336 |
| 0.8317 |
1300 |
1.7519 |
- |
- |
- |
- |
| 0.8957 |
1400 |
1.7515 |
- |
- |
- |
- |
| 0.9597 |
1500 |
1.7288 |
1.7434 |
0.8352 |
0.5050 |
0.9428 |
| 1.0237 |
1600 |
1.533 |
- |
- |
- |
- |
| 1.0877 |
1700 |
1.2543 |
- |
- |
- |
- |
| 1.1196 |
1750 |
- |
1.7109 |
0.8514 |
0.5299 |
0.9415 |
| 1.1516 |
1800 |
1.3201 |
- |
- |
- |
- |
| 1.2156 |
1900 |
1.3309 |
- |
- |
- |
- |
| 1.2796 |
2000 |
1.3256 |
1.7111 |
0.8528 |
0.5138 |
0.9393 |
| 1.3436 |
2100 |
1.2865 |
- |
- |
- |
- |
| 1.4075 |
2200 |
1.2659 |
- |
- |
- |
- |
| 1.4395 |
2250 |
- |
1.7974 |
0.8468 |
0.5320 |
0.9390 |
| 1.4715 |
2300 |
1.2601 |
- |
- |
- |
- |
| 1.5355 |
2400 |
1.3337 |
- |
- |
- |
- |
| 1.5995 |
2500 |
1.3319 |
1.6922 |
0.8575 |
0.5399 |
0.9416 |
| 1.6635 |
2600 |
1.3232 |
- |
- |
- |
- |
| 1.7274 |
2700 |
1.3684 |
- |
- |
- |
- |
| 1.7594 |
2750 |
- |
1.5772 |
0.8581 |
0.5592 |
0.9484 |
| 1.7914 |
2800 |
1.2706 |
- |
- |
- |
- |
| 1.8554 |
2900 |
1.3186 |
- |
- |
- |
- |
| 1.9194 |
3000 |
1.2336 |
1.5423 |
0.8656 |
0.5749 |
0.9433 |
| 1.9834 |
3100 |
1.2193 |
- |
- |
- |
- |
| 2.0473 |
3200 |
0.868 |
- |
- |
- |
- |
| 2.0793 |
3250 |
- |
1.6575 |
0.8632 |
0.5735 |
0.9395 |
| 2.1113 |
3300 |
0.6411 |
- |
- |
- |
- |
| 2.1753 |
3400 |
0.7127 |
- |
- |
- |
- |
| 2.2393 |
3500 |
0.7044 |
1.5778 |
0.8718 |
0.5823 |
0.9387 |
| 2.3033 |
3600 |
0.6299 |
- |
- |
- |
- |
| 2.3672 |
3700 |
0.7162 |
- |
- |
- |
- |
| 2.3992 |
3750 |
- |
1.6300 |
0.8595 |
0.5936 |
0.9414 |
| 2.4312 |
3800 |
0.6642 |
- |
- |
- |
- |
| 2.4952 |
3900 |
0.6902 |
- |
- |
- |
- |
| 2.5592 |
4000 |
0.7959 |
1.6070 |
0.8637 |
0.6006 |
0.9363 |
| 2.6232 |
4100 |
0.7588 |
- |
- |
- |
- |
| 2.6871 |
4200 |
0.6925 |
- |
- |
- |
- |
| 2.7191 |
4250 |
- |
1.6787 |
0.8682 |
0.6006 |
0.9411 |
| 2.7511 |
4300 |
0.7226 |
- |
- |
- |
- |
| 2.8151 |
4400 |
0.7507 |
- |
- |
- |
- |
| 2.8791 |
4500 |
0.7563 |
1.6040 |
0.8658 |
0.6061 |
0.9416 |
| 2.9431 |
4600 |
0.7737 |
- |
- |
- |
- |
| 3.0070 |
4700 |
0.6525 |
- |
- |
- |
- |
| 3.0390 |
4750 |
- |
1.6782 |
0.8652 |
0.5983 |
0.9401 |
| 3.0710 |
4800 |
0.3831 |
- |
- |
- |
- |
| 3.1350 |
4900 |
0.297 |
- |
- |
- |
- |
| 3.1990 |
5000 |
0.3725 |
1.7229 |
0.8588 |
0.6175 |
0.9418 |
| 3.2630 |
5100 |
0.4142 |
- |
- |
- |
- |
| 3.3269 |
5200 |
0.4415 |
- |
- |
- |
- |
| 3.3589 |
5250 |
- |
1.6564 |
0.8635 |
0.6026 |
0.9379 |
| 3.3909 |
5300 |
0.3729 |
- |
- |
- |
- |
| 3.4549 |
5400 |
0.4164 |
- |
- |
- |
- |
| 3.5189 |
5500 |
0.3668 |
1.5964 |
0.8677 |
0.6105 |
0.9358 |
| 3.5829 |
5600 |
0.4184 |
- |
- |
- |
- |
| 3.6468 |
5700 |
0.4311 |
- |
- |
- |
- |
| 3.6788 |
5750 |
- |
1.6523 |
0.8680 |
0.6130 |
0.9365 |
| 3.7108 |
5800 |
0.4222 |
- |
- |
- |
- |
| 3.7748 |
5900 |
0.4302 |
- |
- |
- |
- |
| 3.8388 |
6000 |
0.428 |
1.6625 |
0.8674 |
0.6163 |
0.9370 |
| 3.9028 |
6100 |
0.3898 |
- |
- |
- |
- |
| 3.9667 |
6200 |
0.4255 |
- |
- |
- |
- |
| 3.9987 |
6250 |
- |
1.6145 |
0.8680 |
0.6118 |
0.9347 |
| 4.0307 |
6300 |
0.3456 |
- |
- |
- |
- |
| 4.0947 |
6400 |
0.2265 |
- |
- |
- |
- |
| 4.1587 |
6500 |
0.1913 |
1.7208 |
0.8595 |
0.6339 |
0.9433 |
| 4.2226 |
6600 |
0.2258 |
- |
- |
- |
- |
| 4.2866 |
6700 |
0.2484 |
- |
- |
- |
- |
| 4.3186 |
6750 |
- |
1.6286 |
0.8600 |
0.6313 |
0.9394 |
| 4.3506 |
6800 |
0.1977 |
- |
- |
- |
- |
| 4.4146 |
6900 |
0.2013 |
- |
- |
- |
- |
| 4.4786 |
7000 |
0.2351 |
1.6910 |
0.8651 |
0.6193 |
0.9401 |
| 4.5425 |
7100 |
0.2356 |
- |
- |
- |
- |
| 4.6065 |
7200 |
0.2542 |
- |
- |
- |
- |
| 4.6385 |
7250 |
- |
1.6955 |
0.8643 |
0.6129 |
0.9357 |
| 4.6705 |
7300 |
0.2592 |
- |
- |
- |
- |
| 4.7345 |
7400 |
0.2585 |
- |
- |
- |
- |
| 4.7985 |
7500 |
0.2375 |
1.7593 |
0.8647 |
0.6143 |
0.9325 |
| 4.8624 |
7600 |
0.2506 |
- |
- |
- |
- |
| 4.9264 |
7700 |
0.2394 |
- |
- |
- |
- |
| 4.9584 |
7750 |
- |
1.6051 |
0.8720 |
0.6213 |
0.9350 |
| 4.9904 |
7800 |
0.2374 |
- |
- |
- |
- |
| 5.0544 |
7900 |
0.1675 |
- |
- |
- |
- |
| 5.1184 |
8000 |
0.131 |
1.5864 |
0.8673 |
0.6201 |
0.9377 |
| 5.1823 |
8100 |
0.1308 |
- |
- |
- |
- |
| 5.2463 |
8200 |
0.1483 |
- |
- |
- |
- |
| 5.2783 |
8250 |
- |
1.5976 |
0.8698 |
0.6136 |
0.9359 |
| 5.3103 |
8300 |
0.1413 |
- |
- |
- |
- |
| 5.3743 |
8400 |
0.1392 |
- |
- |
- |
- |
| 5.4383 |
8500 |
0.1464 |
1.5980 |
0.8661 |
0.6267 |
0.9346 |
| 5.5022 |
8600 |
0.1781 |
- |
- |
- |
- |
| 5.5662 |
8700 |
0.151 |
- |
- |
- |
- |
| 5.5982 |
8750 |
- |
1.5343 |
0.8756 |
0.6245 |
0.9352 |
| 5.6302 |
8800 |
0.1568 |
- |
- |
- |
- |
| 5.6942 |
8900 |
0.1702 |
- |
- |
- |
- |
| 5.7582 |
9000 |
0.1362 |
1.7121 |
0.8675 |
0.6230 |
0.9362 |
| 5.8221 |
9100 |
0.1371 |
- |
- |
- |
- |
| 5.8861 |
9200 |
0.1381 |
- |
- |
- |
- |
| 5.9181 |
9250 |
- |
1.6326 |
0.8671 |
0.6122 |
0.9302 |
| 5.9501 |
9300 |
0.1691 |
- |
- |
- |
- |
| 6.0141 |
9400 |
0.1701 |
- |
- |
- |
- |
| 6.0781 |
9500 |
0.0935 |
1.5705 |
0.8709 |
0.6066 |
0.9293 |
| 6.1420 |
9600 |
0.0852 |
- |
- |
- |
- |
| 6.2060 |
9700 |
0.0874 |
- |
- |
- |
- |
| 6.2380 |
9750 |
- |
1.5643 |
0.8724 |
0.6061 |
0.9307 |
| 6.2700 |
9800 |
0.0889 |
- |
- |
- |
- |
| 6.3340 |
9900 |
0.0972 |
- |
- |
- |
- |
| 6.3980 |
10000 |
0.1011 |
1.5622 |
0.8736 |
0.6153 |
0.9328 |
| 6.4619 |
10100 |
0.0962 |
- |
- |
- |
- |
| 6.5259 |
10200 |
0.1259 |
- |
- |
- |
- |
| 6.5579 |
10250 |
- |
1.5406 |
0.8687 |
0.6293 |
0.9373 |
| 6.5899 |
10300 |
0.0925 |
- |
- |
- |
- |
| 6.6539 |
10400 |
0.1138 |
- |
- |
- |
- |
| 6.7179 |
10500 |
0.0788 |
1.5450 |
0.8658 |
0.6226 |
0.9349 |
| 6.7818 |
10600 |
0.1112 |
- |
- |
- |
- |
| 6.8458 |
10700 |
0.0922 |
- |
- |
- |
- |
| 6.8778 |
10750 |
- |
1.5063 |
0.8736 |
0.6245 |
0.9370 |
| 6.9098 |
10800 |
0.1173 |
- |
- |
- |
- |
| 6.9738 |
10900 |
0.1141 |
- |
- |
- |
- |
| 7.0377 |
11000 |
0.0637 |
1.5007 |
0.8741 |
0.6270 |
0.9379 |
| 7.1017 |
11100 |
0.0713 |
- |
- |
- |
- |
| 7.1657 |
11200 |
0.0754 |
- |
- |
- |
- |
| 7.1977 |
11250 |
- |
1.5081 |
0.8725 |
0.6273 |
0.9376 |
| 7.2297 |
11300 |
0.04 |
- |
- |
- |
- |
| 7.2937 |
11400 |
0.0695 |
- |
- |
- |
- |
| 7.3576 |
11500 |
0.034 |
1.5598 |
0.8710 |
0.6179 |
0.9350 |
| 7.4216 |
11600 |
0.0513 |
- |
- |
- |
- |
| 7.4856 |
11700 |
0.0749 |
- |
- |
- |
- |
| 7.5176 |
11750 |
- |
1.6118 |
0.8694 |
0.6264 |
0.9380 |
| 7.5496 |
11800 |
0.0708 |
- |
- |
- |
- |
| 7.6136 |
11900 |
0.0939 |
- |
- |
- |
- |
| 7.6775 |
12000 |
0.059 |
1.6282 |
0.8708 |
0.6271 |
0.9354 |
| 7.7415 |
12100 |
0.0847 |
- |
- |
- |
- |
| 7.8055 |
12200 |
0.0521 |
- |
- |
- |
- |
| 7.8375 |
12250 |
- |
1.5478 |
0.8683 |
0.6359 |
0.9388 |
| 7.8695 |
12300 |
0.0394 |
- |
- |
- |
- |
| 7.9335 |
12400 |
0.0619 |
- |
- |
- |
- |
| 7.9974 |
12500 |
0.0593 |
1.5440 |
0.8771 |
0.6387 |
0.9393 |
| 8.0614 |
12600 |
0.0292 |
- |
- |
- |
- |
| 8.1254 |
12700 |
0.0267 |
- |
- |
- |
- |
| 8.1574 |
12750 |
- |
1.5419 |
0.8773 |
0.6290 |
0.9388 |
| 8.1894 |
12800 |
0.0334 |
- |
- |
- |
- |
| 8.2534 |
12900 |
0.05 |
- |
- |
- |
- |
| 8.3173 |
13000 |
0.0439 |
1.5589 |
0.8740 |
0.6322 |
0.9384 |
| 8.3813 |
13100 |
0.0409 |
- |
- |
- |
- |
| 8.4453 |
13200 |
0.03 |
- |
- |
- |
- |
| 8.4773 |
13250 |
- |
1.5472 |
0.8730 |
0.6347 |
0.9398 |
| 8.5093 |
13300 |
0.0373 |
- |
- |
- |
- |
| 8.5733 |
13400 |
0.0404 |
- |
- |
- |
- |
| 8.6372 |
13500 |
0.0357 |
1.5332 |
0.8749 |
0.6327 |
0.9404 |
| 8.7012 |
13600 |
0.023 |
- |
- |
- |
- |
| 8.7652 |
13700 |
0.0256 |
- |
- |
- |
- |
| 8.7972 |
13750 |
- |
1.5154 |
0.8781 |
0.6337 |
0.9379 |
| 8.8292 |
13800 |
0.0563 |
- |
- |
- |
- |
| 8.8932 |
13900 |
0.029 |
- |
- |
- |
- |
| 8.9571 |
14000 |
0.0395 |
1.5503 |
0.8771 |
0.6344 |
0.9390 |
| 9.0211 |
14100 |
0.0296 |
- |
- |
- |
- |
| 9.0851 |
14200 |
0.0308 |
- |
- |
- |
- |
| 9.1171 |
14250 |
- |
1.5385 |
0.8771 |
0.6363 |
0.9391 |
| 9.1491 |
14300 |
0.035 |
- |
- |
- |
- |
| 9.2131 |
14400 |
0.0217 |
- |
- |
- |
- |
| 9.2770 |
14500 |
0.0192 |
1.5592 |
0.8777 |
0.6373 |
0.9393 |
| 9.3410 |
14600 |
0.0369 |
- |
- |
- |
- |
| 9.4050 |
14700 |
0.0186 |
- |
- |
- |
- |
| 9.4370 |
14750 |
- |
1.5626 |
0.8771 |
0.6368 |
0.9389 |
| 9.4690 |
14800 |
0.0303 |
- |
- |
- |
- |
| 9.5329 |
14900 |
0.0181 |
- |
- |
- |
- |
| 9.5969 |
15000 |
0.0217 |
1.5466 |
0.8782 |
0.6387 |
0.9390 |
| 9.6609 |
15100 |
0.0463 |
- |
- |
- |
- |
| 9.7249 |
15200 |
0.0211 |
- |
- |
- |
- |
| 9.7569 |
15250 |
- |
1.5440 |
0.8772 |
0.6401 |
0.9395 |
| 9.7889 |
15300 |
0.0216 |
- |
- |
- |
- |
| 9.8528 |
15400 |
0.0328 |
- |
- |
- |
- |
| 9.9168 |
15500 |
0.0154 |
1.5399 |
0.8773 |
0.6393 |
0.9388 |
| 9.9808 |
15600 |
0.0263 |
- |
- |
- |
- |
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}