bopha-stt-1.3.1
This model is a fine-tuned version of unsloth/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0498
- Wer: 84.6154
- Ter: 8461.5385
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 16
- seed: 3407
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 8
Training results
| Training Loss | Epoch | Step | Validation Loss | Ter | Wer |
|---|---|---|---|---|---|
| 1.0002 | 0.1860 | 400 | 0.9297 | 11846.1538 | 120.0 |
| 0.3177 | 0.3721 | 800 | 0.3096 | 11384.6154 | 113.8462 |
| 0.2278 | 0.5581 | 1200 | 0.2437 | 11230.7692 | 112.3077 |
| 0.1923 | 0.7442 | 1600 | 0.1919 | 10769.2308 | 107.6923 |
| 0.1674 | 0.9302 | 2000 | 0.1675 | 9846.1538 | 98.4615 |
| 0.1313 | 1.1163 | 2400 | 0.1594 | 10923.0769 | 109.2308 |
| 0.128 | 1.3023 | 2800 | 0.1370 | 10615.3846 | 106.1538 |
| 0.1241 | 1.4884 | 3200 | 0.1289 | 9692.3077 | 96.9231 |
| 0.1177 | 1.6744 | 3600 | 0.1167 | 9538.4615 | 95.3846 |
| 0.1092 | 1.8605 | 4000 | 0.1082 | 10615.3846 | 106.1538 |
| 0.0817 | 2.0465 | 4400 | 0.1035 | 9538.4615 | 95.3846 |
| 0.0773 | 2.2326 | 4800 | 0.0986 | 10000.0 | 100.0 |
| 0.0769 | 2.4186 | 5200 | 0.0957 | 8923.0769 | 89.2308 |
| 0.0783 | 2.6047 | 5600 | 0.0894 | 10461.5385 | 104.6154 |
| 0.0712 | 2.7907 | 6000 | 0.0906 | 8923.0769 | 89.2308 |
| 0.0655 | 2.9767 | 6400 | 0.0840 | 8769.2308 | 87.6923 |
| 0.0588 | 3.1628 | 6800 | 0.0771 | 7076.9231 | 70.7692 |
| 0.0588 | 3.3488 | 7200 | 0.0646 | 7538.4615 | 75.3846 |
| 0.0517 | 3.5349 | 7600 | 0.0647 | 8000.0 | 80.0 |
| 0.0541 | 3.7209 | 8000 | 0.0645 | 8461.5385 | 84.6154 |
| 0.0536 | 3.9070 | 8400 | 0.0679 | 8461.5385 | 84.6154 |
| 0.0414 | 4.0930 | 8800 | 0.0691 | 8923.0769 | 89.2308 |
| 0.0431 | 4.2791 | 9200 | 0.0609 | 8769.2308 | 87.6923 |
| 0.0404 | 4.4651 | 9600 | 0.0607 | 8153.8462 | 81.5385 |
| 0.0395 | 4.6512 | 10000 | 0.0631 | 8615.3846 | 86.1538 |
| 0.038 | 4.8372 | 10400 | 0.0594 | 8615.3846 | 86.1538 |
| 0.0308 | 5.0233 | 10800 | 0.0577 | 8769.2308 | 87.6923 |
| 0.0312 | 5.2093 | 11200 | 0.0542 | 8153.8462 | 81.5385 |
| 0.0306 | 5.3953 | 11600 | 0.0543 | 8769.2308 | 87.6923 |
| 0.029 | 5.5814 | 12000 | 0.0525 | 8307.6923 | 83.0769 |
| 0.0299 | 5.7674 | 12400 | 0.0531 | 8307.6923 | 83.0769 |
| 0.0311 | 5.9535 | 12800 | 0.0487 | 8307.6923 | 83.0769 |
| 0.0218 | 6.1395 | 13200 | 0.0475 | 7846.1538 | 78.4615 |
| 0.0245 | 6.3256 | 13600 | 0.0500 | 8923.0769 | 89.2308 |
| 0.0256 | 6.5116 | 14000 | 0.0500 | 8769.2308 | 87.6923 |
| 0.0219 | 6.6977 | 14400 | 0.0497 | 80.0 | 8000.0 |
| 0.0214 | 6.8837 | 14800 | 0.0502 | 81.5385 | 8153.8462 |
| 0.021 | 7.0698 | 15200 | 0.0498 | 81.5385 | 8153.8462 |
| 0.0215 | 7.2558 | 15600 | 0.0494 | 81.5385 | 8153.8462 |
| 0.0215 | 7.4419 | 16000 | 0.0493 | 78.4615 | 7846.1538 |
| 0.0202 | 7.6279 | 16400 | 0.0499 | 81.5385 | 8153.8462 |
| 0.0202 | 7.8140 | 16800 | 0.0496 | 81.5385 | 8153.8462 |
| 0.0216 | 8.0 | 17200 | 0.0498 | 84.6154 | 8461.5385 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 3