bopha-stt-1.3.1

This model is a fine-tuned version of unsloth/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0498
  • Wer: 84.6154
  • Ter: 8461.5385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 20
  • eval_batch_size: 16
  • seed: 3407
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.02
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Ter Wer
1.0002 0.1860 400 0.9297 11846.1538 120.0
0.3177 0.3721 800 0.3096 11384.6154 113.8462
0.2278 0.5581 1200 0.2437 11230.7692 112.3077
0.1923 0.7442 1600 0.1919 10769.2308 107.6923
0.1674 0.9302 2000 0.1675 9846.1538 98.4615
0.1313 1.1163 2400 0.1594 10923.0769 109.2308
0.128 1.3023 2800 0.1370 10615.3846 106.1538
0.1241 1.4884 3200 0.1289 9692.3077 96.9231
0.1177 1.6744 3600 0.1167 9538.4615 95.3846
0.1092 1.8605 4000 0.1082 10615.3846 106.1538
0.0817 2.0465 4400 0.1035 9538.4615 95.3846
0.0773 2.2326 4800 0.0986 10000.0 100.0
0.0769 2.4186 5200 0.0957 8923.0769 89.2308
0.0783 2.6047 5600 0.0894 10461.5385 104.6154
0.0712 2.7907 6000 0.0906 8923.0769 89.2308
0.0655 2.9767 6400 0.0840 8769.2308 87.6923
0.0588 3.1628 6800 0.0771 7076.9231 70.7692
0.0588 3.3488 7200 0.0646 7538.4615 75.3846
0.0517 3.5349 7600 0.0647 8000.0 80.0
0.0541 3.7209 8000 0.0645 8461.5385 84.6154
0.0536 3.9070 8400 0.0679 8461.5385 84.6154
0.0414 4.0930 8800 0.0691 8923.0769 89.2308
0.0431 4.2791 9200 0.0609 8769.2308 87.6923
0.0404 4.4651 9600 0.0607 8153.8462 81.5385
0.0395 4.6512 10000 0.0631 8615.3846 86.1538
0.038 4.8372 10400 0.0594 8615.3846 86.1538
0.0308 5.0233 10800 0.0577 8769.2308 87.6923
0.0312 5.2093 11200 0.0542 8153.8462 81.5385
0.0306 5.3953 11600 0.0543 8769.2308 87.6923
0.029 5.5814 12000 0.0525 8307.6923 83.0769
0.0299 5.7674 12400 0.0531 8307.6923 83.0769
0.0311 5.9535 12800 0.0487 8307.6923 83.0769
0.0218 6.1395 13200 0.0475 7846.1538 78.4615
0.0245 6.3256 13600 0.0500 8923.0769 89.2308
0.0256 6.5116 14000 0.0500 8769.2308 87.6923
0.0219 6.6977 14400 0.0497 80.0 8000.0
0.0214 6.8837 14800 0.0502 81.5385 8153.8462
0.021 7.0698 15200 0.0498 81.5385 8153.8462
0.0215 7.2558 15600 0.0494 81.5385 8153.8462
0.0215 7.4419 16000 0.0493 78.4615 7846.1538
0.0202 7.6279 16400 0.0499 81.5385 8153.8462
0.0202 7.8140 16800 0.0496 81.5385 8153.8462
0.0216 8.0 17200 0.0498 84.6154 8461.5385

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.22.1
Downloads last month
3
Safetensors
Model size
2B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Tnaot/bopha-stt-1.3.1

Finetuned
(50)
this model
Finetunes
1 model

Evaluation results