signet
This model is a fine-tuned version of on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4517
- Accuracy: 0.7854
- F1: 0.8643
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 128
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.05
- num_epochs: 12
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.05
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| No log | 1.0 | 37 | 0.5892 | 0.7383 | 0.8479 |
| No log | 2.0 | 74 | 0.5829 | 0.7372 | 0.8464 |
| 2.4270 | 3.0 | 111 | 0.5547 | 0.7419 | 0.8504 |
| 2.4270 | 4.0 | 148 | 0.5311 | 0.7344 | 0.8415 |
| 2.4270 | 5.0 | 185 | 0.5291 | 0.7404 | 0.8472 |
| 2.1988 | 6.0 | 222 | 0.5170 | 0.7432 | 0.8496 |
| 2.1988 | 7.0 | 259 | 0.4517 | 0.7854 | 0.8643 |
| 2.1988 | 8.0 | 296 | 0.4865 | 0.7653 | 0.8406 |
| 1.9616 | 9.0 | 333 | 0.4380 | 0.7875 | 0.8614 |
| 1.9616 | 10.0 | 370 | 0.4546 | 0.7698 | 0.8367 |
| 1.7220 | 11.0 | 407 | 0.4355 | 0.7901 | 0.8552 |
| 1.7220 | 12.0 | 444 | 0.4334 | 0.7963 | 0.8622 |
Framework versions
- Transformers 5.0.0
- Pytorch 2.9.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.2
- Downloads last month
- 12
Evaluation results
- Accuracy on imagefolderself-reported0.785
- F1 on imagefolderself-reported0.864