Real-Time Long Horizon Air Quality Forecasting via Group-Relative Policy Optimization
Paper
•
2511.22169
•
Published
•
1
Exception: SplitsNotFoundError
Message: The split names could not be parsed from the dataset config.
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
for split_generator in builder._split_generators(
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 83, in _split_generators
raise ValueError(
ValueError: The TAR archives of the dataset should be in WebDataset format, but the files in the archive don't share the same prefix or the same types.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
for split in get_dataset_split_names(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
info = get_dataset_config_info(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
This repository contains the dataset used in FAKER-Air, consisting of ground-truth air quality observations interpolated onto a grid and CMAQ reanalysis data tailored for East Asia.
The data is organized into two main directories inside data/:
data/obs)
Ground-truth station data interpolated onto the CMAQ 27km grid.
.npz (Compressed NumPy archives)YYYYMMDDHH_obs.npz (e.g., 2016010100_obs.npz)data/cmaq)
Physics-based model outputs (Community Multiscale Air Quality).
.npy and .jsonYYYY/MM/DD/NIER_27_01/*_x_conc.npy: Concentration fields.*_x_metcro2d.npy: 2D Meteorological fields.*_x_metcro3d.npy: 3D Meteorological fields.*_meta.json: Metadata.You can download specific parts of the dataset using the huggingface_hub Python library.
pip install huggingface_hub numpy
from huggingface_hub import snapshot_download
import numpy as np
import os
# 1. Download the dataset (It will cache data locally)
# To download only specific years or folders, use `allow_patterns`.
local_dir = snapshot_download(
repo_id="2na-97/FAKER-Air",
repo_type="dataset",
allow_patterns=[
"data/obs/2023*.npz", # Example: Only download OBS for 2023
"data/cmaq/2023/**" # Example: Only download CMAQ for 2023
]
)
print(f"Data downloaded to: {local_dir}")
# 2. Load an OBS file
obs_path = os.path.join(local_dir, "data/obs/2023010100_obs.npz")
if os.path.exists(obs_path):
data = np.load(obs_path)
print("Keys in OBS:", data.files)
# Example access: data['pm25']
# 3. Load a CMAQ file
cmaq_path = os.path.join(local_dir, "data/cmaq/2023/01/01/NIER_27_01/20230101_x_conc.npy")
if os.path.exists(cmaq_path):
cmaq_data = np.load(cmaq_path)
print("CMAQ Shape:", cmaq_data.shape)
@article{kang2026fakerair,
title={Real-Time Long Horizon Air Quality Forecasting via Group-Relative Policy Optimization},
author={Kang, Inha and others},
journal={arXiv preprint arXiv:2511.22169},
year={2026}
}