Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code: FeaturesError
Exception: ArrowInvalid
Message: Schema at index 1 was different:
num_tasks: int64
total_grids_original: int64
total_augmented_grids: int64
augmentations_per_grid: int64
vs
_data_files: list<item: struct<filename: string>>
_fingerprint: string
_format_columns: null
_format_kwargs: struct<>
_format_type: null
_output_all_columns: bool
_split: null
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
return next(iter(self.iter(batch_size=n)))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
for key, example in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 563, in _iter_arrow
yield new_key, pa.Table.from_batches(chunks_buffer)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Schema at index 1 was different:
num_tasks: int64
total_grids_original: int64
total_augmented_grids: int64
augmentations_per_grid: int64
vs
_data_files: list<item: struct<filename: string>>
_fingerprint: string
_format_columns: null
_format_kwargs: struct<>
_format_type: null
_output_all_columns: bool
_split: nullNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
JDWebProgrammer/arg-agi-augmented
Dataset Description
Overview
This dataset is an augmented version of grids extracted from the ARC-AGI dataset (Abstraction and Reasoning Corpus). It focuses on individual grids rather than full tasks or games, providing an expanded collection for pretraining and testing models like autoencoders (AEs) or latent-space reasoners.
- Source: Derived from the
trainingsplit of ARC-AGI (all demonstration and test grids). - Augmentations: Each original grid is expanded with 5 transformations (horizontal flip, vertical flip, 90°/180°/270° rotations), resulting in 6 variants per grid (original + 5 augments).
- Key Note: This is not the full games/tasks from ARC-AGI. It contains only the raw, augmented grids (as 2D lists of integers 0-10) for standalone use in perceptual pretraining or reconstruction testing. Use the original ARC-AGI for full few-shot reasoning tasks.
Dataset Structure
- Format: Hugging Face
Datasetobject. - Splits: Single split (
train) with one field:augmented_grids: List of 2D lists (grids). Each grid is[[int, ...], ...](H x W, values 0-10).
- Size: ~48,000 grids (from ~400 ARC training tasks × ~4 grids/task × 6 augments).
- Metadata: See
metadata.jsonfor stats (original grids, augmentation factor).
Example grid entry:
augmented_grids[0] = [[0, 1, 0], [1, 0, 1], [0, 1, 0]] # Example 3x3 grid
Usage
Load and use for pretraining:
from datasets import load_dataset
ds = load_dataset("JDWebProgrammer/arc-agi-augmented")
grids = ds['augmented_grids'] # List of all grids
Ideal for:
- Pretraining perceptual models.
- Testing reconstruction accuracy (compare original vs. augmented).
- Data augmentation for fluid intelligence tasks (e.g., ARC-like pattern inference).
Generation
- Extracted all input/output grids from ARC-AGI
trainingsplit demos/tests. - Applied deterministic augmentations (flips/rotations) to expand variety without labels.
- No synthetic generation — pure augmentation of real ARC data.
Limitations
- Grids only (no task structure/context) — not for end-to-end ARC solving.
- Augmentations preserve structure but may introduce artifacts (e.g., rotations on asymmetric grids).
- Values 0-10 (ARC standard); normalize for models.
License
- Based on ARC-AGI (CC BY-SA 4.0) — inherits same license.
- Augmentations: MIT (free for research/commercial).
Citation
@misc{dataartist/arc-agi,
title = {ARC-AGI },
author = {dataartist},
year = {2025},
url = {https://huggingface.co/datasets/dataartist/arc-agi}
}
Generated for pretraining perceptual models on ARC-style puzzles. Not a substitute for full ARC tasks.
- Downloads last month
- 18