File size: 4,451 Bytes
599a945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db10e3c
599a945
 
 
 
 
 
 
 
 
 
 
 
db10e3c
599a945
db10e3c
599a945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db10e3c
599a945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: mit
size_categories:
- 10K<n<100K
task_categories:
- image-to-3d
- robotics
- image-feature-extraction
- depth-estimation
- image-to-text
- other
modalities:
- image
- tabular
- text
dataset_info:
  features:
  - name: image
    dtype: image
  - name: semantic_class
    dtype: string
  - name: transform
    dtype: string
  - name: Tx
    dtype: float32
  - name: Ty
    dtype: float32
  - name: Tz
    dtype: float32
  - name: rot_x
    dtype: float32
  - name: rot_y
    dtype: float32
  - name: rot_z
    dtype: float32
  - name: rot_w
    dtype: float32
  splits:
  - name: train
    num_bytes: 4106560699
    num_examples: 16000
  - name: validation
    num_bytes: 510934045
    num_examples: 2000
  - name: test
    num_bytes: 513367561
    num_examples: 2000
  download_size: 2568917592
  dataset_size: 5130862305
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
---

# A Synthetic Dataset for Visual Perspective Taking

This dataset ("AnonymousDataset") accompanies the submission **"Towards Social Foundation Models: A Framework and Synthetic Dataset for Grounding Visual Perspective Taking in Robots"**. 

It is a large-scale synthetic resource designed for training socio-cognitive foundational models for robotics, specifically for the task of **Visual Perspective Taking (VPT)**. The core objective is to enable a robot to infer an object's precise 6-DOF pose (position and orientation) relative to another agent's viewpoint, given a single RGB image.

The dataset was procedurally generated using **NVIDIA Isaac Sim** and **Omniverse Replicator**, providing high-fidelity RGB images paired with perfect ground-truth pose annotations.

---

## Dataset Details

### Dataset Summary

This dataset serves to explore the viability of using high-fidelity synthetic data as a scalable and cost-effective alternative for metric spatial grounding in the context of Visual Perspective Taking.

The data consists of renders of a target object (**mug**) placed on a tabletop in a shared workspace scene containing a humanoid agent (**x-bot**). For each rendered image, the dataset contains separate entries for each entity, providing its semantic class and exact 6-DOF pose relative to the camera.

* **Total Examples:** 20,000 (derived from 10,000 unique scenes)
* **Objects:** `mug`, `xbot_humanoid`

---

## Data Fields

The dataset contains the following fields for each instance:

* **`image`**: A `PIL.Image.Image` object containing the rendered RGB image ($512 X 512$ pixels).
* **`semantic_class`**: A `string` indicating the class of the entity for which the pose is provided (e.g., "mug" or "humanoid").
* **`transform`**: A `string` representing the full $4 X 4$ transformation matrix that maps points from the camera's coordinate frame to the object's local coordinate frame.
* **`Tx`, `Ty`, `Tz`**: The translation components (`float`) of the object's pose in metres, extracted from the transformation matrix.
* **`rot_x`, `rot_y`, `rot_z`, `rot_w`**: The unit quaternion components (`float`) representing the rotation of the object relative to the camera.

---

## Data Splits

The data is split into training, validation, and test sets. Critically, the splits were created based on **unique images** (scenes) rather than instances. This ensures that no image seen during training appears in the validation or test sets, preventing data leakage.

| Split        | Number of Examples |
|--------------|--------------------|
| `train`      | 16,000             |
| `validation` | 2,000              |
| `test`       | 2,000              |

---

## How to Use

You can load and use the dataset with the `datasets` library. 

```python
from datasets import load_dataset

# Load the dataset from the Hugging Face Hub
dataset = load_dataset("anonymous-authors-2025/AnonymousDataset")

# Access an example from the training set
example = dataset['train'][42]

image = example['image']
semantic_class = example['semantic_class']
translation_vector = [example['Tx'], example['Ty'], example['Tz']]
rotation_quaternion = [example['rot_x'], example['rot_y'], example['rot_z'], example['rot_w']]

print(f"Object Class: {semantic_class}")
print(f"Translation (m): {translation_vector}")
print(f"Rotation (quaternion): {rotation_quaternion}")

# To display the image (e.g., in a Jupyter notebook)
# image.show()