id
stringclasses 1
value | instruction
stringclasses 206
values | trajectory
listlengths 2
348
| length
int64 2
348
| public_tests
listlengths 1
6
| generated_tests
listlengths 4
100
|
|---|---|---|---|---|---|
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"def main():\n",
"def main():\n \nmain()\n",
"def main():\n \n \nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n \n \nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n \n \nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n \n \nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in :\n \n \nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in :\n \n if :\n \n \nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in :\n \n if :\n \n print(\"Possible\")\n \n \nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in :\n \n if :\n \n print(\"Possible\")\n for j in :\n \n \nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in :\n \n if :\n \n print(\"Possible\")\n for j in :\n \n for j in :\n \n \nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in :\n \n if :\n \n print(\"Possible\")\n for j in :\n \n for j in :\n \n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n \n if :\n \n print(\"Possible\")\n for j in :\n \n for j in :\n \n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n if(A[i]+A[i+1] >= L):\n flg = True\n break\n if :\n \n print(\"Possible\")\n for j in :\n \n for j in :\n \n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n if(A[i]+A[i+1] >= L):\n flg = True\n break\n if not flg:\n \n print(\"Possible\")\n for j in :\n \n for j in :\n \n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n if(A[i]+A[i+1] >= L):\n flg = True\n break\n if not flg:\n \n \n print(\"Possible\")\n for j in :\n \n for j in :\n \n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n if(A[i]+A[i+1] >= L):\n flg = True\n break\n if not flg:\n \n \n print(\"Possible\")\n for j in range(1,i+1):\n \n for j in :\n \n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n if(A[i]+A[i+1] >= L):\n flg = True\n break\n if not flg:\n \n \n print(\"Possible\")\n for j in range(1,i+1):\n print(j)\n for j in :\n \n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n if(A[i]+A[i+1] >= L):\n flg = True\n break\n if not flg:\n \n \n print(\"Possible\")\n for j in range(1,i+1):\n print(j)\n for j in reversed:\n \n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n if(A[i]+A[i+1] >= L):\n flg = True\n break\n if not flg:\n \n \n print(\"Possible\")\n for j in range(1,i+1):\n print(j)\n for j in reversed:\n print(j)\n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n if(A[i]+A[i+1] >= L):\n flg = True\n break\n if not flg:\n print(\"Impossible\")\n \n print(\"Possible\")\n for j in range(1,i+1):\n print(j)\n for j in reversed:\n print(j)\n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n if(A[i]+A[i+1] >= L):\n flg = True\n break\n if not flg:\n print(\"Impossible\")\n return\n print(\"Possible\")\n for j in range(1,i+1):\n print(j)\n for j in reversed:\n print(j)\n print(i+1)\nmain()\n",
"def main():\n N,L = [int(n) for n in input().split()]\n A = [int(n) for n in input().split()]\n flg = False\n for i in range(N-1):\n if(A[i]+A[i+1] >= L):\n flg = True\n break\n if not flg:\n print(\"Impossible\")\n return\n print(\"Possible\")\n for j in range(1,i+1):\n print(j)\n for j in reversed(range(i+2,N)):\n print(j)\n print(i+1)\nmain()\n"
] | 24
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l = map(int,input().split())\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in :\n \nprint('Impossible')\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n \nprint('Impossible')\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n print('Possible')\n ans = list(range(1,i+1))+list(range(i+2,n))[::-1]\n ans.append(i+1)\n for i in ans:\n print(i)\n exit()\nprint('Impossible')\n"
] | 7
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"import sys\n",
"import sys\nN, L = map(int, input().split())\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in :\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in :\n \nif :\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in :\n \nif :\n \n\nprint('Possible')\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in :\n \nif :\n \n\nprint('Possible')\nfor i in :\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in :\n \nif :\n \n\nprint('Possible')\nfor i in : \nfor i in :\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in range(N-1):\n \nif :\n \n\nprint('Possible')\nfor i in : \nfor i in :\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n last = i\n break\nif :\n \n\nprint('Possible')\nfor i in : \nfor i in :\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n last = i\n break\nif last == -1:\n \n\nprint('Possible')\nfor i in : \nfor i in :\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n last = i\n break\nif last == -1:\n \n \nprint('Possible')\nfor i in : \nfor i in :\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n last = i\n break\nif last == -1:\n \n \nprint('Possible')\nfor i in range(last): \nfor i in :\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n last = i\n break\nif last == -1:\n \n \nprint('Possible')\nfor i in range(last): print(i+1)\nfor i in :\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n last = i\n break\nif last == -1:\n \n \nprint('Possible')\nfor i in range(last): print(i+1)\nfor i in range(N-1, last, -1):\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n last = i\n break\nif last == -1:\n \n \nprint('Possible')\nfor i in range(last): print(i+1)\nfor i in range(N-1, last, -1): print(i)\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n last = i\n break\nif last == -1:\n print('Impossible')\n \n\nprint('Possible')\nfor i in range(last): print(i+1)\nfor i in range(N-1, last, -1): print(i)\n",
"import sys\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nlast = -1\nfor i in range(N-1):\n if a[i] + a[i+1] >= L:\n last = i\n break\nif last == -1:\n print('Impossible')\n sys.exit()\n\nprint('Possible')\nfor i in range(last): print(i+1)\nfor i in range(N-1, last, -1): print(i)\n"
] | 20
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfor i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfor i in range(1,n):\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfor i in range(1,n):\n if a[i]+a[i-1]>=l:\n print(\"Possible\")\n for j in range(1,i):\n print(j)\n for j in range(n-1,i,-1):\n print(j)\n print(i)\n break\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfor i in range(1,n):\n if a[i]+a[i-1]>=l:\n print(\"Possible\")\n for j in range(1,i):\n print(j)\n for j in range(n-1,i,-1):\n print(j)\n print(i)\n break\nelse:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfor i in range(1,n):\n if a[i]+a[i-1]>=l:\n print(\"Possible\")\n for j in range(1,i):\n print(j)\n for j in range(n-1,i,-1):\n print(j)\n print(i)\n break\nelse:\n print(\"Impossible\")\n"
] | 8
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"#最後に切るものを決める\ni = 0\n",
"N, L = map(int, input().split())\n\n\n#最後に切るものを決める\ni = 0\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile :\n \n\nif :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n \n\nif :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n \n \nif :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n \n \nif not flag:\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n \n \nif not flag:\n print ('Impossible')\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n \n \nif not flag:\n print ('Impossible')\nelse:\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if :\n \n \nif not flag:\n print ('Impossible')\nelse:\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if :\n \n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n \n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n \n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n \n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n \n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n for j in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n \n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n for j in :\n \n for j in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n flag = True\n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n for j in :\n \n for j in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n flag = True\n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n for j in range(i):\n \n for j in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n flag = True\n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n for j in range(i):\n print (j + 1)\n for j in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n flag = True\n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n for j in range(i):\n print (j + 1)\n for j in range(N - 1, i, -1):\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\n#最後に切るものを決める\ni = 0\nflag = False\nwhile i < N - 1:\n if a[i] + a[i + 1] >= L:\n flag = True\n break\n i += 1\n\nif not flag:\n print ('Impossible')\nelse:\n print ('Possible')\n for j in range(i):\n print (j + 1)\n for j in range(N - 1, i, -1):\n print (j)\n"
] | 24
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"import sys\n",
"import sys\nN, L =map(int,input().split())\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in :\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in :\n \n\nprint(\"Possible\")\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in :\n \n\nprint(\"Possible\")\nfor i in :\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in :\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(N-1):\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(N-1):\n if a[i]+a[i+1] >= L:\n flag = i+1\n break\n\n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(N-1):\n if a[i]+a[i+1] >= L:\n flag = i+1\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(N-1):\n if a[i]+a[i+1] >= L:\n flag = i+1\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1,flag):\n \nfor i in :\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(N-1):\n if a[i]+a[i+1] >= L:\n flag = i+1\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1,flag):\n print(i)\nfor i in :\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(N-1):\n if a[i]+a[i+1] >= L:\n flag = i+1\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1,flag):\n print(i)\nfor i in range(N-1,flag-1,-1):\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(N-1):\n if a[i]+a[i+1] >= L:\n flag = i+1\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1,flag):\n print(i)\nfor i in range(N-1,flag-1,-1):\n print(i)\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(N-1):\n if a[i]+a[i+1] >= L:\n flag = i+1\n break\nelse:\n \n \nprint(\"Possible\")\nfor i in range(1,flag):\n print(i)\nfor i in range(N-1,flag-1,-1):\n print(i)\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(N-1):\n if a[i]+a[i+1] >= L:\n flag = i+1\n break\nelse:\n print(\"Impossible\")\n \n\nprint(\"Possible\")\nfor i in range(1,flag):\n print(i)\nfor i in range(N-1,flag-1,-1):\n print(i)\n",
"import sys\nN, L =map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(N-1):\n if a[i]+a[i+1] >= L:\n flag = i+1\n break\nelse:\n print(\"Impossible\")\n sys.exit()\n\nprint(\"Possible\")\nfor i in range(1,flag):\n print(i)\nfor i in range(N-1,flag-1,-1):\n print(i)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"import sys\n",
"import sys\n\nN, L = map(int, input().split())\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in :\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in :\n \n\nprint(\"Possible\")\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in :\n \n\nprint(\"Possible\")\n\nfor i in :\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in :\n \n\nprint(\"Possible\")\n\nfor i in :\n \n\nfor i in :\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(N-1):\n \n\nprint(\"Possible\")\n\nfor i in :\n \n\nfor i in :\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n idx = i\n break\n\n\nprint(\"Possible\")\n\nfor i in :\n \n\nfor i in :\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n idx = i\n break\nelse:\n \n\nprint(\"Possible\")\n\nfor i in :\n \n\nfor i in :\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n idx = i\n break\nelse:\n \n\nprint(\"Possible\")\n\nfor i in range(1, i+1):\n \n\nfor i in :\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n idx = i\n break\nelse:\n \n\nprint(\"Possible\")\n\nfor i in range(1, i+1):\n print(i)\n\nfor i in :\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n idx = i\n break\nelse:\n \n\nprint(\"Possible\")\n\nfor i in range(1, i+1):\n print(i)\n\nfor i in range(N-1, i, -1):\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n idx = i\n break\nelse:\n \n\nprint(\"Possible\")\n\nfor i in range(1, i+1):\n print(i)\n\nfor i in range(N-1, i, -1):\n print(i)\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n idx = i\n break\nelse:\n \n \nprint(\"Possible\")\n\nfor i in range(1, i+1):\n print(i)\n\nfor i in range(N-1, i, -1):\n print(i)\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n idx = i\n break\nelse:\n print(\"Impossible\")\n \n\nprint(\"Possible\")\n\nfor i in range(1, i+1):\n print(i)\n\nfor i in range(N-1, i, -1):\n print(i)\n",
"import sys\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n idx = i\n break\nelse:\n print(\"Impossible\")\n sys.exit()\n\nprint(\"Possible\")\n\nfor i in range(1, i+1):\n print(i)\n\nfor i in range(N-1, i, -1):\n print(i)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na = [int(x) for x in input().split()]\n",
"n,l=map(int,input().split())\na = [int(x) for x in input().split()]\nfor i in :\n",
"n,l=map(int,input().split())\na = [int(x) for x in input().split()]\nfor i in range(1,n):\n",
"n,l=map(int,input().split())\na = [int(x) for x in input().split()]\nfor i in range(1,n):\n if a[i-1] +a[i]>= l:\n print(\"Possible\")\n for j in range(1,i):\n print(j)\n for j in range(n-1,i-1,-1):\n print(j)\n break\n",
"n,l=map(int,input().split())\na = [int(x) for x in input().split()]\nfor i in range(1,n):\n if a[i-1] +a[i]>= l:\n print(\"Possible\")\n for j in range(1,i):\n print(j)\n for j in range(n-1,i-1,-1):\n print(j)\n break\nelse:\n",
"n,l=map(int,input().split())\na = [int(x) for x in input().split()]\nfor i in range(1,n):\n if a[i-1] +a[i]>= l:\n print(\"Possible\")\n for j in range(1,i):\n print(j)\n for j in range(n-1,i-1,-1):\n print(j)\n break\nelse:\n print(\"Impossible\")\n"
] | 8
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in :\n \nif ok:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n \nif ok:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n \n \nelse:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n print(\"Possible\")\n \n \nelse:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n print(\"Possible\")\n for i in :\n \n \nelse:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n print(\"Possible\")\n for i in :\n \n for i in :\n \n \nelse:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n print(\"Possible\")\n for i in :\n \n for i in :\n \n print(idx+1)\nelse:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n print(\"Possible\")\n for i in :\n \n for i in :\n \n print(idx+1)\nelse:\n print(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n print(\"Possible\")\n for i in range(1,idx+1):\n \n for i in :\n \n print(idx+1)\nelse:\n print(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n print(\"Possible\")\n for i in range(1,idx+1):\n print(i)\n for i in :\n \n print(idx+1)\nelse:\n print(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n print(\"Possible\")\n for i in range(1,idx+1):\n print(i)\n for i in reversed:\n \n print(idx+1)\nelse:\n print(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n print(\"Possible\")\n for i in range(1,idx+1):\n print(i)\n for i in reversed:\n print(i)\n print(idx+1)\nelse:\n print(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nok=False\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ok=True\n idx=i\nif ok:\n print(\"Possible\")\n for i in range(1,idx+1):\n print(i)\n for i in reversed(range(idx+2,n)):\n print(i)\n print(idx+1)\nelse:\n print(\"Impossible\")\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"import sys\n",
"import sys\ninput = sys.stdin.readline\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in :\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in :\n \n\nfor i in :\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in :\n \n\nfor i in : \nfor i in :\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in :\n \n\nfor i in : \nfor i in : \nres.reverse()\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in :\n \n\nfor i in : \nfor i in : \nres.reverse()\nprint(\"Possible\")\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in :\n \n\nfor i in : \nfor i in : \nres.reverse()\nprint(\"Possible\")\nfor r in res:\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n \n\nfor i in : \nfor i in : \nres.reverse()\nprint(\"Possible\")\nfor r in res:\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n res.append(i)\n break\n\nfor i in : \nfor i in : \nres.reverse()\nprint(\"Possible\")\nfor r in res:\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n res.append(i)\n break\nelse:\n \nfor i in : \nfor i in : \nres.reverse()\nprint(\"Possible\")\nfor r in res:\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n res.append(i)\n break\nelse:\n \nfor i in range(res[0] - 1, -1, -1): \nfor i in : \nres.reverse()\nprint(\"Possible\")\nfor r in res:\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n res.append(i)\n break\nelse:\n \nfor i in range(res[0] - 1, -1, -1): res.append(i)\nfor i in : \nres.reverse()\nprint(\"Possible\")\nfor r in res:\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n res.append(i)\n break\nelse:\n \nfor i in range(res[0] - 1, -1, -1): res.append(i)\nfor i in range(res[0] + 1, N - 1): \nres.reverse()\nprint(\"Possible\")\nfor r in res:\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n res.append(i)\n break\nelse:\n \nfor i in range(res[0] - 1, -1, -1): res.append(i)\nfor i in range(res[0] + 1, N - 1): res.append(i)\nres.reverse()\nprint(\"Possible\")\nfor r in res:\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n res.append(i)\n break\nelse:\n \nfor i in range(res[0] - 1, -1, -1): res.append(i)\nfor i in range(res[0] + 1, N - 1): res.append(i)\nres.reverse()\nprint(\"Possible\")\nfor r in res: print(r + 1)\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n res.append(i)\n break\nelse:\n \n \nfor i in range(res[0] - 1, -1, -1): res.append(i)\nfor i in range(res[0] + 1, N - 1): res.append(i)\nres.reverse()\nprint(\"Possible\")\nfor r in res: print(r + 1)\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n res.append(i)\n break\nelse:\n print(\"Impossible\")\n \nfor i in range(res[0] - 1, -1, -1): res.append(i)\nfor i in range(res[0] + 1, N - 1): res.append(i)\nres.reverse()\nprint(\"Possible\")\nfor r in res: print(r + 1)\n",
"import sys\ninput = sys.stdin.readline\nN, L = map(int, input().split())\na = list(map(int, input().split()))\nres = []\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n res.append(i)\n break\nelse:\n print(\"Impossible\")\n exit(0)\nfor i in range(res[0] - 1, -1, -1): res.append(i)\nfor i in range(res[0] + 1, N - 1): res.append(i)\nres.reverse()\nprint(\"Possible\")\nfor r in res: print(r + 1)\n"
] | 23
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = list(map(int, input().split()))\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in :\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in :\n \n\nif :\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n \n\nif :\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n \n \nif :\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n \n \nif judge == \"Impossible\":\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n \n \nif judge == \"Impossible\":\n print(judge)\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n \n \nif judge == \"Impossible\":\n print(judge)\nelse:\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n \n\nif judge == \"Impossible\":\n print(judge)\nelse:\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if :\n \n\nif judge == \"Impossible\":\n print(judge)\nelse:\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n \n\nif judge == \"Impossible\":\n print(judge)\nelse:\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n \n \n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n \n \n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n print(judge)\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n \n \n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n print(judge)\n for i in :\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n \n \n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n print(judge)\n for i in :\n \n for i in :\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n \n \n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n print(judge)\n for i in :\n \n for i in :\n \n print(c)\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n judge = \"Possible\"\n \n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n print(judge)\n for i in :\n \n for i in :\n \n print(c)\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n judge = \"Possible\"\n c = i + 1\n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n print(judge)\n for i in :\n \n for i in :\n \n print(c)\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n judge = \"Possible\"\n c = i + 1\n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n print(judge)\n for i in range(1, c):\n \n for i in :\n \n print(c)\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n judge = \"Possible\"\n c = i + 1\n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n print(judge)\n for i in range(1, c):\n print(i)\n for i in :\n \n print(c)\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n judge = \"Possible\"\n c = i + 1\n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n print(judge)\n for i in range(1, c):\n print(i)\n for i in range(N - c - 1):\n \n print(c)\n",
"N, L = list(map(int, input().split()))\na = list(map(int, input().split()))\n\njudge = \"Impossible\"\nfor i in range(N - 1):\n x = a[i] + a[i + 1]\n if x >= L:\n judge = \"Possible\"\n c = i + 1\n break\n\n\nif judge == \"Impossible\":\n print(judge)\nelse:\n print(judge)\n for i in range(1, c):\n print(i)\n for i in range(N - c - 1):\n print(N - 1 - i)\n print(c)\n"
] | 25
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"def inpl():\n",
"def inpl(): \nimport sys\n",
"def inpl(): \nimport sys\nN, L = inpl()\n",
"def inpl(): \nimport sys\nN, L = inpl()\na = inpl()\n",
"def inpl(): \nimport sys\nN, L = inpl()\na = inpl()\nb = []\n",
"def inpl(): \nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in :\n",
"def inpl(): \nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in :\n \nbmax = max(b)\n",
"def inpl(): \nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in :\n \nbmax = max(b)\nif :\n",
"def inpl(): \nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in :\n \nbmax = max(b)\nif :\n \n\nprint('Possible')\n",
"def inpl(): \nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in :\n \nbmax = max(b)\nif :\n \n\nprint('Possible')\nans = b.index(bmax)\n",
"def inpl(): \nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in :\n \nbmax = max(b)\nif :\n \n\nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\n",
"def inpl(): \nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in :\n \nbmax = max(b)\nif :\n \n\nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\nfor i in :\n",
"def inpl(): return [int(i) for i in input().split()]\nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in :\n \nbmax = max(b)\nif :\n \n\nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\nfor i in :\n",
"def inpl(): return [int(i) for i in input().split()]\nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in range(N-1):\n \nbmax = max(b)\nif :\n \n\nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\nfor i in :\n",
"def inpl(): return [int(i) for i in input().split()]\nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in range(N-1):\n b.append(a[i]+a[i+1])\nbmax = max(b)\nif :\n \n\nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\nfor i in :\n",
"def inpl(): return [int(i) for i in input().split()]\nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in range(N-1):\n b.append(a[i]+a[i+1])\nbmax = max(b)\nif bmax < L:\n \n\nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\nfor i in :\n",
"def inpl(): return [int(i) for i in input().split()]\nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in range(N-1):\n b.append(a[i]+a[i+1])\nbmax = max(b)\nif bmax < L:\n \n \nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\nfor i in :\n",
"def inpl(): return [int(i) for i in input().split()]\nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in range(N-1):\n b.append(a[i]+a[i+1])\nbmax = max(b)\nif bmax < L:\n \n \nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\nfor i in range(N-1):\n",
"def inpl(): return [int(i) for i in input().split()]\nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in range(N-1):\n b.append(a[i]+a[i+1])\nbmax = max(b)\nif bmax < L:\n \n \nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\nfor i in range(N-1):\n print(Ans[i]+1)\n",
"def inpl(): return [int(i) for i in input().split()]\nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in range(N-1):\n b.append(a[i]+a[i+1])\nbmax = max(b)\nif bmax < L:\n print('Impossible')\n \n\nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\nfor i in range(N-1):\n print(Ans[i]+1)\n",
"def inpl(): return [int(i) for i in input().split()]\nimport sys\nN, L = inpl()\na = inpl()\nb = []\nfor i in range(N-1):\n b.append(a[i]+a[i+1])\nbmax = max(b)\nif bmax < L:\n print('Impossible')\n sys.exit()\n\nprint('Possible')\nans = b.index(bmax)\n\nAns = list(range(0,ans)) + list(range(N-2,ans,-1))+[ans]\nfor i in range(N-1):\n print(Ans[i]+1)\n"
] | 22
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"i=m=0\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor in :\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor in :\n \nif m<l:\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor j,(x,y)in :\n \nif m<l:\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor j,(x,y)in enumerate:\n \nif m<l:\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor j,(x,y)in enumerate:\n if x+y>m:\n m=x+y\n i=j\nif m<l:\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor j,(x,y)in enumerate:\n if x+y>m:\n m=x+y\n i=j\nif m<l:\n print('Impossible')\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor j,(x,y)in enumerate:\n if x+y>m:\n m=x+y\n i=j\nif m<l:\n print('Impossible')\nelse:\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor j,(x,y)in enumerate(zip(a,a[1:]),1):\n if x+y>m:\n m=x+y\n i=j\nif m<l:\n print('Impossible')\nelse:\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor j,(x,y)in enumerate(zip(a,a[1:]),1):\n if x+y>m:\n m=x+y\n i=j\nif m<l:\n print('Impossible')\nelse:\n print('Possible')\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor j,(x,y)in enumerate(zip(a,a[1:]),1):\n if x+y>m:\n m=x+y\n i=j\nif m<l:\n print('Impossible')\nelse:\n print('Possible')\n print(*range(1,i))\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor j,(x,y)in enumerate(zip(a,a[1:]),1):\n if x+y>m:\n m=x+y\n i=j\nif m<l:\n print('Impossible')\nelse:\n print('Possible')\n print(*range(1,i))\n print(*range(n-1,i,-1))\n",
"n,l,*a=map(int,open(0).read().split())\ni=m=0\nfor j,(x,y)in enumerate(zip(a,a[1:]),1):\n if x+y>m:\n m=x+y\n i=j\nif m<l:\n print('Impossible')\nelse:\n print('Possible')\n print(*range(1,i))\n print(*range(n-1,i,-1))\n print(i)\n"
] | 15
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"def main():\n",
"def main():\n \n\nif :\n",
"def main():\n \n \nif :\n",
"def main():\n \n \nif __name__ == \"__main__\":\n",
"def main():\n \n \nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L = map(int, input().split())\n \n \nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n \n \nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in :\n \n \nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in :\n \n print(\"Impossible\")\n\n\nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in range(1, N):\n \n print(\"Impossible\")\n\n\nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in range(1, N):\n if A[i-1] + A[i] >= L:\n print(\"Possible\")\n for j in range(1, i):\n print(j)\n for j in range(N-1, i-1, -1):\n print(j)\n return\n print(\"Impossible\")\n\n\nif __name__ == \"__main__\":\n main()\n"
] | 12
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L=map(int,input().split())\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in :\n \nif :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n \nif :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n print('Impossible')\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n print('Impossible')\nelse:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n print('Impossible')\nelse:\n print('Possible')\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n \n print(idx)\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,idx):\n \n for i in :\n \n print(idx)\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,idx):\n print(i)\n for i in :\n \n print(idx)\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,idx):\n print(i)\n for i in range(N-1,idx,-1):\n \n print(idx)\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nflag=False\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n flag=True\n idx=i+1\n break\nif not flag:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,idx):\n print(i)\n for i in range(N-1,idx,-1):\n print(i)\n print(idx)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"import sys\n",
"import sys\nimport os\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main:\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main:\n \n\nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n \n\nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n \n \nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n \n \nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n is_long = [x + y >= L for x, y in zip(A, A[1:])]\n \n \nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n is_long = [x + y >= L for x, y in zip(A, A[1:])]\n if :\n \n \nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n is_long = [x + y >= L for x, y in zip(A, A[1:])]\n if :\n \n print('Possible')\n \n \nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n is_long = [x + y >= L for x, y in zip(A, A[1:])]\n if :\n \n print('Possible')\n i = is_long.index(True)\n \n \nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n is_long = [x + y >= L for x, y in zip(A, A[1:])]\n if :\n \n print('Possible')\n i = is_long.index(True)\n nums = list(range(1, i + 1)) + list(range(N - 1, i, -1))\n \n\nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n is_long = [x + y >= L for x, y in zip(A, A[1:])]\n if :\n \n print('Possible')\n i = is_long.index(True)\n nums = list(range(1, i + 1)) + list(range(N - 1, i, -1))\n print(*nums, sep='\\n')\n\nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n is_long = [x + y >= L for x, y in zip(A, A[1:])]\n if not any(is_long):\n \n print('Possible')\n i = is_long.index(True)\n nums = list(range(1, i + 1)) + list(range(N - 1, i, -1))\n print(*nums, sep='\\n')\n\nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n is_long = [x + y >= L for x, y in zip(A, A[1:])]\n if not any(is_long):\n \n \n print('Possible')\n i = is_long.index(True)\n nums = list(range(1, i + 1)) + list(range(N - 1, i, -1))\n print(*nums, sep='\\n')\n\nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n is_long = [x + y >= L for x, y in zip(A, A[1:])]\n if not any(is_long):\n print('Impossible')\n \n print('Possible')\n i = is_long.index(True)\n nums = list(range(1, i + 1)) + list(range(N - 1, i, -1))\n print(*nums, sep='\\n')\n\nmain(L, A)\n",
"import sys\nimport os\n\nN, L, *A = map(int, os.read(0, 10**8).split())\n\ndef main(L, A):\n N = len(A)\n is_long = [x + y >= L for x, y in zip(A, A[1:])]\n if not any(is_long):\n print('Impossible')\n return\n print('Possible')\n i = is_long.index(True)\n nums = list(range(1, i + 1)) + list(range(N - 1, i, -1))\n print(*nums, sep='\\n')\n\nmain(L, A)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n, l = [ int(v) for v in input().split() ]\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in :\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in :\n \nif :\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n \nif :\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif :\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n print(\"Impossible\")\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n print(\"Impossible\")\nelse:\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,pos):\n \n for i in :\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,pos):\n print(i)\n for i in :\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,pos):\n print(i)\n for i in range(n-1,pos-1,-1):\n",
"n, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,pos):\n print(i)\n for i in range(n-1,pos-1,-1):\n print(i)\n",
"\nn, l = [ int(v) for v in input().split() ]\nknot_list = [ int(v) for v in input().split() ]\n\npos = 0\nfor i in range(1,n):\n if knot_list[i-1] + knot_list[i] >= l:\n pos = i\n break\nif pos == 0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,pos):\n print(i)\n for i in range(n-1,pos-1,-1):\n print(i)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"def s():\n",
"def s():\n \nif :\n s()\n",
"def s():\n \n \nif :\n s()\n",
"def s():\n \n \nif __name__==\"__main__\":\n s()\n",
"def s():\n n, l, *a = map(int, open(0).read().split())\n \nif __name__==\"__main__\":\n s()\n",
"def s():\n n, l, *a = map(int, open(0).read().split())\n for in :\n \n \nif __name__==\"__main__\":\n s()\n",
"def s():\n n, l, *a = map(int, open(0).read().split())\n for i, (x, y) in :\n \n \nif __name__==\"__main__\":\n s()\n",
"def s():\n n, l, *a = map(int, open(0).read().split())\n for i, (x, y) in enumerate:\n \n \nif __name__==\"__main__\":\n s()\n",
"def s():\n n, l, *a = map(int, open(0).read().split())\n for i, (x, y) in enumerate:\n if x + y >= l:\n print(\"Possible\")\n r = list(range(n))\n print(\"\\n\".join(map(str, r[1:i + 1] + r[n:i:-1])))\n break\n \nif __name__==\"__main__\":\n s()\n",
"def s():\n n, l, *a = map(int, open(0).read().split())\n for i, (x, y) in enumerate:\n if x + y >= l:\n print(\"Possible\")\n r = list(range(n))\n print(\"\\n\".join(map(str, r[1:i + 1] + r[n:i:-1])))\n break\n else:\n \nif __name__==\"__main__\":\n s()\n",
"def s():\n n, l, *a = map(int, open(0).read().split())\n for i, (x, y) in enumerate(zip(a, a[1:])):\n if x + y >= l:\n print(\"Possible\")\n r = list(range(n))\n print(\"\\n\".join(map(str, r[1:i + 1] + r[n:i:-1])))\n break\n else:\n \nif __name__==\"__main__\":\n s()\n",
"def s():\n n, l, *a = map(int, open(0).read().split())\n for i, (x, y) in enumerate(zip(a, a[1:])):\n if x + y >= l:\n print(\"Possible\")\n r = list(range(n))\n print(\"\\n\".join(map(str, r[1:i + 1] + r[n:i:-1])))\n break\n else:\n print(\"Impossible\")\nif __name__==\"__main__\":\n s()\n"
] | 13
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"x=0\n",
"N,L=map(int, input().split())\n\nx=0\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in :\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in :\n \n\nif x==0:\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in :\n \n\nif x==0:\n \n\nprint('Possible')\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in :\n \n\nif x==0:\n \n\nprint('Possible')\nfor i in :\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in :\n \n\nif x==0:\n \n\nprint('Possible')\nfor i in :\n \nfor i in :\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n \n\nif x==0:\n \n\nprint('Possible')\nfor i in :\n \nfor i in :\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n \n \nif x==0:\n \n\nprint('Possible')\nfor i in :\n \nfor i in :\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n \n \nif x==0:\n \n \nprint('Possible')\nfor i in :\n \nfor i in :\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n \n \nif x==0:\n \n \nprint('Possible')\nfor i in range(1,knot):\n \nfor i in :\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n \n \nif x==0:\n \n \nprint('Possible')\nfor i in range(1,knot):\n print(i)\nfor i in :\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n \n \nif x==0:\n \n \nprint('Possible')\nfor i in range(1,knot):\n print(i)\nfor i in range(N-1,knot-1,-1):\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n \n \nif x==0:\n \n \nprint('Possible')\nfor i in range(1,knot):\n print(i)\nfor i in range(N-1,knot-1,-1):\n print(i)\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n d=A[i]+A[i+1]\n \n\nif x==0:\n \n \nprint('Possible')\nfor i in range(1,knot):\n print(i)\nfor i in range(N-1,knot-1,-1):\n print(i)\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n d=A[i]+A[i+1]\n if d>=L:\n \n\nif x==0:\n \n \nprint('Possible')\nfor i in range(1,knot):\n print(i)\nfor i in range(N-1,knot-1,-1):\n print(i)\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n d=A[i]+A[i+1]\n if d>=L:\n \n\nif x==0:\n print('Impossible')\n \n\nprint('Possible')\nfor i in range(1,knot):\n print(i)\nfor i in range(N-1,knot-1,-1):\n print(i)\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n d=A[i]+A[i+1]\n if d>=L:\n \n\nif x==0:\n print('Impossible')\n exit()\n\nprint('Possible')\nfor i in range(1,knot):\n print(i)\nfor i in range(N-1,knot-1,-1):\n print(i)\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n d=A[i]+A[i+1]\n if d>=L:\n x=1\n \n break\n\nif x==0:\n print('Impossible')\n exit()\n\nprint('Possible')\nfor i in range(1,knot):\n print(i)\nfor i in range(N-1,knot-1,-1):\n print(i)\n",
"N,L=map(int, input().split())\nA=list(map(int, input().split()))\nx=0\nfor i in range(N-1):\n d=A[i]+A[i+1]\n if d>=L:\n x=1\n knot=i+1\n break\n\nif x==0:\n print('Impossible')\n exit()\n\nprint('Possible')\nfor i in range(1,knot):\n print(i)\nfor i in range(N-1,knot-1,-1):\n print(i)\n"
] | 22
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"#002_C\n",
"#002_C\nn, l = map(int, input().split())\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflg = False\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflg = False\nans = []\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflg = False\nans = []\nfor i in :\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflg = False\nans = []\nfor i in :\n \n\nif flg:\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflg = False\nans = []\nfor i in range(n-1):\n \n\nif flg:\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflg = False\nans = []\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n ans = [j for j in range(1, i+1)] + [j for j in range(n-1, i+1, -1)] + [i+1]\n flg = True\n break\n\nif flg:\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflg = False\nans = []\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n ans = [j for j in range(1, i+1)] + [j for j in range(n-1, i+1, -1)] + [i+1]\n flg = True\n break\n\nif flg:\n \n \nelse:\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflg = False\nans = []\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n ans = [j for j in range(1, i+1)] + [j for j in range(n-1, i+1, -1)] + [i+1]\n flg = True\n break\n\nif flg:\n print('Possible')\n \nelse:\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflg = False\nans = []\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n ans = [j for j in range(1, i+1)] + [j for j in range(n-1, i+1, -1)] + [i+1]\n flg = True\n break\n\nif flg:\n print('Possible')\n print(*ans, sep='\\n')\nelse:\n",
"#002_C\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflg = False\nans = []\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n ans = [j for j in range(1, i+1)] + [j for j in range(n-1, i+1, -1)] + [i+1]\n flg = True\n break\n\nif flg:\n print('Possible')\n print(*ans, sep='\\n')\nelse:\n print('Impossible')\n"
] | 14
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in :\n \nif :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n \nif :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n print(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n print(\"Impossible\")\nelse:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n s=mu.index(max(mu))\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n s=mu.index(max(mu))\n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n s=mu.index(max(mu))\n for i in :\n \n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n s=mu.index(max(mu))\n for i in range(1,s+1):\n \n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n s=mu.index(max(mu))\n for i in range(1,s+1):\n print(i)\n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n s=mu.index(max(mu))\n for i in range(1,s+1):\n print(i)\n for i in range(n-1,s,-1):\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nmu=[0]*(n-1)\nfor i in range(n-1):\n mu[i]=a[i]+a[i+1]\nif max(mu)<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n s=mu.index(max(mu))\n for i in range(1,s+1):\n print(i)\n for i in range(n-1,s,-1):\n print(i)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"#KNOT PUZZLE\n\n\nJ=0\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\n\n\nJ=0\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\n\nJ=0\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in :\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in :\n \nif :\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in :\n \nif :\n \nif flag:\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n \nif :\n \nif flag:\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif :\n \nif flag:\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n \nif flag:\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n for i in :\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n for i in :\n \n print(J)\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n for i in range(100001,0,-1):\n \n print(J)\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n for i in range(100001,0,-1):\n \n \n print(J)\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n for i in range(100001,0,-1):\n if :\n \n \n print(J)\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n for i in range(100001,0,-1):\n if :\n \n if :\n \n print(J)\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n for i in range(100001,0,-1):\n if 1<=J-i<=N-1:\n \n if :\n \n print(J)\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n for i in range(100001,0,-1):\n if 1<=J-i<=N-1:\n print(J-i)\n if :\n \n print(J)\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n for i in range(100001,0,-1):\n if 1<=J-i<=N-1:\n print(J-i)\n if 1<=J+i<=N-1:\n \n print(J)\n",
"#KNOT PUZZLE\nN,L=map(int,input().split())\nlists=list(map(int,input().split()))\nflag=False\nJ=0\nfor i in range(N-1):\n if lists[i]+lists[i+1]>=L:\n J=i+1\n flag=True\n break\nif not flag:\n print(\"Impossible\")\nif flag:\n print(\"Possible\")\n for i in range(100001,0,-1):\n if 1<=J-i<=N-1:\n print(J-i)\n if 1<=J+i<=N-1:\n print(J+i)\n print(J)\n"
] | 23
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int, input().split())\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in :\n \nif :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n \nif :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif ans==-1:\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif ans==-1:print('Impossible')\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif ans==-1:print('Impossible')\nelse:\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif ans==-1:print('Impossible')\nelse:\n print('Possible')\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif ans==-1:print('Impossible')\nelse:\n print('Possible')\n for i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif ans==-1:print('Impossible')\nelse:\n print('Possible')\n for i in :\n for i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif ans==-1:print('Impossible')\nelse:\n print('Possible')\n for i in range(1,ans):\n for i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif ans==-1:print('Impossible')\nelse:\n print('Possible')\n for i in range(1,ans):print(i)\n for i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif ans==-1:print('Impossible')\nelse:\n print('Possible')\n for i in range(1,ans):print(i)\n for i in range(n-1,i,-1):\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\nans=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n ans=i+1\n break\nif ans==-1:print('Impossible')\nelse:\n print('Possible')\n for i in range(1,ans):print(i)\n for i in range(n-1,i,-1):print(i)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = map(int,input().split())\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor in :\n \n\nans = []\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor in :\n \n\nans = []\nfor j in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor in :\n \n\nans = []\nfor j in :\n \nfor j in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor in :\n \n\nans = []\nfor j in :\n \nfor j in :\n \nans.append(i+1)\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor in :\n \n\nans = []\nfor j in :\n \nfor j in :\n \nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in :\n \n\nans = []\nfor j in :\n \nfor j in :\n \nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate:\n \n\nans = []\nfor j in :\n \nfor j in :\n \nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate:\n if a+b >= L:\n print('Possible')\n break\n\nans = []\nfor j in :\n \nfor j in :\n \nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate:\n if a+b >= L:\n print('Possible')\n break\nelse:\n \nans = []\nfor j in :\n \nfor j in :\n \nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate:\n if a+b >= L:\n print('Possible')\n break\nelse:\n \nans = []\nfor j in range(1,i+1):\n \nfor j in :\n \nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate:\n if a+b >= L:\n print('Possible')\n break\nelse:\n \nans = []\nfor j in range(1,i+1):\n ans.append(j)\nfor j in :\n \nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate:\n if a+b >= L:\n print('Possible')\n break\nelse:\n \nans = []\nfor j in range(1,i+1):\n ans.append(j)\nfor j in range(N-1,i+1,-1):\n \nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate:\n if a+b >= L:\n print('Possible')\n break\nelse:\n \nans = []\nfor j in range(1,i+1):\n ans.append(j)\nfor j in range(N-1,i+1,-1):\n ans.append(j)\nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n print('Possible')\n break\nelse:\n \nans = []\nfor j in range(1,i+1):\n ans.append(j)\nfor j in range(N-1,i+1,-1):\n ans.append(j)\nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n print('Possible')\n break\nelse:\n \n \nans = []\nfor j in range(1,i+1):\n ans.append(j)\nfor j in range(N-1,i+1,-1):\n ans.append(j)\nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n print('Possible')\n break\nelse:\n print('Impossible')\n \nans = []\nfor j in range(1,i+1):\n ans.append(j)\nfor j in range(N-1,i+1,-1):\n ans.append(j)\nans.append(i+1)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n print('Possible')\n break\nelse:\n print('Impossible')\n exit()\nans = []\nfor j in range(1,i+1):\n ans.append(j)\nfor j in range(N-1,i+1,-1):\n ans.append(j)\nans.append(i+1)\nprint(*ans, sep='\\n')\n"
] | 21
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in :\n \n\nif :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n \n\nif :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif idx == -1:\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif idx == -1:\n print(\"Impossible\")\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif idx == -1:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(idx):\n \n for i in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(idx):\n print(i + 1)\n for i in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(idx):\n print(i + 1)\n for i in range(N - 1, idx, -1):\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n\nidx = -1\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n idx = i\n break\n\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(idx):\n print(i + 1)\n for i in range(N - 1, idx, -1):\n print(i)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n \n\nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n \nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in :\n \n\nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in :\n \n\n for i in :\n \n \nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in :\n \n\n for i in :\n \n for i in :\n \n \nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in :\n \n\n for i in :\n \n for i in :\n \n print(xi)\n\nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in :\n \n\n for i in :\n \n for i in :\n \n print(xi)\n\nelse:\n print('Impossible')\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in enumerate:\n \n\n for i in :\n \n for i in :\n \n print(xi)\n\nelse:\n print('Impossible')\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in enumerate:\n if x >= L:\n xi = i\n break\n\n for i in :\n \n for i in :\n \n print(xi)\n\nelse:\n print('Impossible')\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in enumerate:\n if x >= L:\n xi = i\n break\n\n for i in range(1, xi):\n \n for i in :\n \n print(xi)\n\nelse:\n print('Impossible')\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in enumerate:\n if x >= L:\n xi = i\n break\n\n for i in range(1, xi):\n print(i)\n for i in :\n \n print(xi)\n\nelse:\n print('Impossible')\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in enumerate:\n if x >= L:\n xi = i\n break\n\n for i in range(1, xi):\n print(i)\n for i in reversed:\n \n print(xi)\n\nelse:\n print('Impossible')\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in enumerate:\n if x >= L:\n xi = i\n break\n\n for i in range(1, xi):\n print(i)\n for i in reversed:\n print(i)\n print(xi)\n\nelse:\n print('Impossible')\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in enumerate(X, start=1):\n if x >= L:\n xi = i\n break\n\n for i in range(1, xi):\n print(i)\n for i in reversed:\n print(i)\n print(xi)\n\nelse:\n print('Impossible')\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\n\nX = [A[i] + A[i + 1] for i in range(N - 1)]\nif any(map(lambda x: x >= L, X)):\n print('Possible')\n\n for i, x in enumerate(X, start=1):\n if x >= L:\n xi = i\n break\n\n for i in range(1, xi):\n print(i)\n for i in reversed(range(xi + 1, N)):\n print(i)\n print(xi)\n\nelse:\n print('Impossible')\n"
] | 21
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\nt=list(map(int,input().split()))\n",
"n,l=map(int,input().split())\nt=list(map(int,input().split()))\nfor i in :\n",
"n,l=map(int,input().split())\nt=list(map(int,input().split()))\nfor i in :\n \nprint('Impossible')\n",
"n,l=map(int,input().split())\nt=list(map(int,input().split()))\nfor i in range(n-1):\n \nprint('Impossible')\n",
"n,l=map(int,input().split())\nt=list(map(int,input().split()))\nfor i in range(n-1):\n if t[i]+t[i+1]>=l:\n print('Possible')\n print(*(list(range(1,i+1))+list(range(n-1,i+1,-1))),sep='\\n')\n print(i+1)\n exit()\nprint('Impossible')\n"
] | 7
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n, l = map(int, input().split())\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor in :\n \nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in :\n \nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n \nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n print(\"Impossible\")\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n print(\"Impossible\")\nelse:\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,start):\n \n for i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,start):\n print(i)\n for i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,start):\n print(i)\n for i in [::-1]:\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,start):\n print(i)\n for i in [::-1]:\n print(i)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nb = [a[i]+a[i+1] for i in range(n-1)]\nstart = -1\nfor ind, length in enumerate(b):\n if length >= l:\n start = ind+1\n break\nif start<0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,start):\n print(i)\n for i in range(start, n)[::-1]:\n print(i)\n"
] | 21
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"x=-1\n",
"N,L=map(int,input().split())\n\n\nx=-1\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in :\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in :\n \nif x==-1:\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n \nif x==-1:\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n if a[i]+a[i+1]>=L:\n x=i\n break\nif x==-1:\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n if a[i]+a[i+1]>=L:\n x=i\n break\nif x==-1:\n print(\"Impossible\")\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n if a[i]+a[i+1]>=L:\n x=i\n break\nif x==-1:\n print(\"Impossible\")\nelse:\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n if a[i]+a[i+1]>=L:\n x=i\n break\nif x==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n if a[i]+a[i+1]>=L:\n x=i\n break\nif x==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n if a[i]+a[i+1]>=L:\n x=i\n break\nif x==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n if a[i]+a[i+1]>=L:\n x=i\n break\nif x==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(N-1, x+1,-1):\n \n for i in :\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n if a[i]+a[i+1]>=L:\n x=i\n break\nif x==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(N-1, x+1,-1):\n print(i)\n for i in :\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n if a[i]+a[i+1]>=L:\n x=i\n break\nif x==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(N-1, x+1,-1):\n print(i)\n for i in range(0,x+1):\n",
"N,L=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(0,N-1):\n if a[i]+a[i+1]>=L:\n x=i\n break\nif x==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(N-1, x+1,-1):\n print(i)\n for i in range(0,x+1):\n print(i+1)\n"
] | 17
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = map(int, input().split())\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in :\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in :\n \nif :\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n \nif :\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif :\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n print('Impossible')\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n print('Impossible')\nelse:\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n print('Impossible')\nelse:\n print('Possible')\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n \n print(choose + 1)\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(0, choose):\n \n for i in :\n \n print(choose + 1)\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(0, choose):\n print(i + 1)\n for i in :\n \n print(choose + 1)\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(0, choose):\n print(i + 1)\n for i in range(N - 1, choose + 1, -1):\n \n print(choose + 1)\n",
"N,L = map(int, input().split())\nA=list(map(int, input().split()))\nchoose = -1\nfor i in range(1, N):\n if A[i - 1] + A[i] >= L:\n choose = i - 1\n break\nif choose == -1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(0, choose):\n print(i + 1)\n for i in range(N - 1, choose + 1, -1):\n print(i)\n print(choose + 1)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in :\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in :\n \nif :\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n \nif :\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n \n \nif :\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n \n \nif longest < L:\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n \n \nif longest < L:\n print(\"Impossible\")\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n \n \nif longest < L:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n \nif longest < L:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if :\n \nif longest < L:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n \nif longest < L:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n \n \nif longest < L:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n \n \nif longest < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n \n \nif longest < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n \n \nif longest < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for j in :\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n longest = knot\n \nif longest < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for j in :\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n longest = knot\n longest_i = i+1\nif longest < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for j in :\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n longest = knot\n longest_i = i+1\nif longest < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,longest_i):\n \n for j in :\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n longest = knot\n longest_i = i+1\nif longest < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,longest_i):\n print(i)\n for j in :\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n longest = knot\n longest_i = i+1\nif longest < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,longest_i):\n print(i)\n for j in range(N-1,longest_i-1,-1):\n",
"N, L = map(int, input().split())\na = list((map(int, input().split())))\nlongest = 0\nlongest_i = N\nfor i in range(N-1):\n knot = a[i]+a[i+1]\n if knot > longest:\n longest = knot\n longest_i = i+1\nif longest < L:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,longest_i):\n print(i)\n for j in range(N-1,longest_i-1,-1):\n print(j)\n"
] | 25
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"i = 0\n",
"N, L = map(int, input().split())\n\n\ni = 0\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in :\n \n\nif :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n \n\nif :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n print('Impossible')\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n print('Impossible')\nelse:\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n print('Impossible')\nelse:\n print('Possible')\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n print('Impossible')\nelse:\n print('Possible')\n for j in :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n print('Impossible')\nelse:\n print('Possible')\n for j in :\n \n for j in :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n print('Impossible')\nelse:\n print('Possible')\n for j in :\n \n for j in :\n \n print(i)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n print('Impossible')\nelse:\n print('Possible')\n for j in range(1,i):\n \n for j in :\n \n print(i)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n print('Impossible')\nelse:\n print('Possible')\n for j in range(1,i):\n print(j)\n for j in :\n \n print(i)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n print('Impossible')\nelse:\n print('Possible')\n for j in range(1,i):\n print(j)\n for j in range(N-1,i,-1):\n \n print(i)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\ni = 0\n\nfor j in range(1,N):\n if As[j-1] + As[j] >= L:\n i = j\n break\n\nif i == 0:\n print('Impossible')\nelse:\n print('Possible')\n for j in range(1,i):\n print(j)\n for j in range(N-1,i,-1):\n print(j)\n print(i)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"v=[]\n",
"from import \n\n\nv=[]\n",
"from import \n\nn,l=map(int,input().split())\n\nv=[]\n",
"from import \n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n",
"from import \n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in :\n",
"from import \n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in :\n \n\nif v:\n",
"from itertools import \n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in :\n \n\nif v:\n",
"from itertools import as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in :\n \n\nif v:\n",
"from itertools import as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n \n\nif v:\n",
"from itertools import as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\n\n\nif v:\n",
"from itertools import as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\nelse:\n \n\nif v:\n",
"from itertools import accumulate as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\nelse:\n \n\nif v:\n",
"from itertools import accumulate as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\nelse:\n print(\"Impossible\")\n\nif v:\n",
"from itertools import accumulate as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\nelse:\n print(\"Impossible\")\n\nif v:\n st=v[0]\n",
"from itertools import accumulate as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\nelse:\n print(\"Impossible\")\n\nif v:\n st=v[0]\n v+=list(range(1,st)[::-1])\n",
"from itertools import accumulate as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\nelse:\n print(\"Impossible\")\n\nif v:\n st=v[0]\n v+=list(range(1,st)[::-1])\n v+=list(range(st+1,n))\n",
"from itertools import accumulate as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\nelse:\n print(\"Impossible\")\n\nif v:\n st=v[0]\n v+=list(range(1,st)[::-1])\n v+=list(range(st+1,n))\n print(\"Possible\")\n",
"from itertools import accumulate as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\nelse:\n print(\"Impossible\")\n\nif v:\n st=v[0]\n v+=list(range(1,st)[::-1])\n v+=list(range(st+1,n))\n print(\"Possible\")\n for i in :\n",
"from itertools import accumulate as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\nelse:\n print(\"Impossible\")\n\nif v:\n st=v[0]\n v+=list(range(1,st)[::-1])\n v+=list(range(st+1,n))\n print(\"Possible\")\n for i in v[::-1]:\n",
"from itertools import accumulate as ac\n\nn,l=map(int,input().split())\n*a,=map(int,input().split())\nv=[]\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n v.append(i+1)\n break\nelse:\n print(\"Impossible\")\n\nif v:\n st=v[0]\n v+=list(range(1,st)[::-1])\n v+=list(range(st+1,n))\n print(\"Possible\")\n for i in v[::-1]:\n print(i)\n"
] | 21
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,L = map(int,input().split())\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in :\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in :\n \n\nansl = []\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in :\n \n\nansl = []\np,q = 0,n-1\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in :\n \n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in :\n \n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in :\n \n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n \n\nprint(\"Possible\")\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in :\n \n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n \n\nprint(\"Possible\")\nfor ans in ansl:\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n \n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n \n\nprint(\"Possible\")\nfor ans in ansl:\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n \n\nprint(\"Possible\")\nfor ans in ansl:\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n \n \nprint(\"Possible\")\nfor ans in ansl:\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n \n \nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if :\n \n \nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if :\n \n if :\n \n \nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n \n if :\n \n \nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n \n \n if :\n \n \nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n \n \n if <= :\n \n \nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n \n \n if <= :\n \n p+=1\n \n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n \n \n if <= :\n \n p+=1\n else:\n \n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n print(\"Impossible\")\n \n if <= :\n \n p+=1\n else:\n \n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n print(\"Impossible\")\n exit()\n if <= :\n \n p+=1\n else:\n \n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n print(\"Impossible\")\n exit()\n if a[p] + <= :\n \n p+=1\n else:\n \n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n print(\"Impossible\")\n exit()\n if a[p] + <= + a[q]:\n \n p+=1\n else:\n \n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n print(\"Impossible\")\n exit()\n if a[p] + <= + a[q]:\n ansl.append(p + 1)\n p+=1\n else:\n \n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n print(\"Impossible\")\n exit()\n if a[p] + <= + a[q]:\n ansl.append(p + 1)\n p+=1\n else:\n \n q-=1\n\n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n print(\"Impossible\")\n exit()\n if a[p] + a[p + 1] <= + a[q]:\n ansl.append(p + 1)\n p+=1\n else:\n \n q-=1\n\n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n print(\"Impossible\")\n exit()\n if a[p] + a[p + 1] <= a[q-1] + a[q]:\n ansl.append(p + 1)\n p+=1\n else:\n \n q-=1\n\n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n",
"n,L = map(int,input().split())\na = list(map(int,input().split()))\n\nr = [0]\nfor i in range(n):\n r.append(r[i] + a[i])\n\nansl = []\np,q = 0,n-1\nsuma = sum(a)\nwhile p < q:\n if r[q+1] - r[p] < L:\n print(\"Impossible\")\n exit()\n if a[p] + a[p + 1] <= a[q-1] + a[q]:\n ansl.append(p + 1)\n p+=1\n else:\n ansl.append(q)\n q-=1\n\n\nprint(\"Possible\")\nfor ans in ansl:\n print(ans)\n"
] | 31
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int,input().split())\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in :\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in :\n \n\nif t:\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n \n\nif t:\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n t = False\n key_number = i\n\nif t:\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n t = False\n key_number = i\n\nif t:\n print(\"Impossible\")\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n t = False\n key_number = i\n\nif t:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n t = False\n key_number = i\n\nif t:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n t = False\n key_number = i\n\nif t:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for ans in :\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n t = False\n key_number = i\n\nif t:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for ans in :\n \n for ans in :\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n t = False\n key_number = i\n\nif t:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for ans in range(1,key_number):\n \n for ans in :\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n t = False\n key_number = i\n\nif t:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for ans in range(1,key_number):\n print(ans)\n for ans in :\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n t = False\n key_number = i\n\nif t:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for ans in range(1,key_number):\n print(ans)\n for ans in range(N-1,key_number-1,-1):\n",
"N, L = map(int,input().split())\na = list(map(int,input().split()))\nt = True\nkey_number = -1\nfor i in range(1,N):\n if a[i] + a[i-1] >= L:\n t = False\n key_number = i\n\nif t:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for ans in range(1,key_number):\n print(ans)\n for ans in range(N-1,key_number-1,-1):\n print(ans)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"import sys\n",
"import sys\n\nN, L = map(int, sys.stdin.readline().rstrip().split())\n",
"import sys\n\nN, L = map(int, sys.stdin.readline().rstrip().split())\nA = list(map(int, sys.stdin.readline().rstrip().split()))\n",
"import sys\n\nN, L = map(int, sys.stdin.readline().rstrip().split())\nA = list(map(int, sys.stdin.readline().rstrip().split()))\n\nfor i in :\n",
"import sys\n\nN, L = map(int, sys.stdin.readline().rstrip().split())\nA = list(map(int, sys.stdin.readline().rstrip().split()))\n\nfor i in :\n \n\nprint(\"Impossible\")\n",
"import sys\n\nN, L = map(int, sys.stdin.readline().rstrip().split())\nA = list(map(int, sys.stdin.readline().rstrip().split()))\n\nfor i in range(N-1):\n \n\nprint(\"Impossible\")\n",
"import sys\n\nN, L = map(int, sys.stdin.readline().rstrip().split())\nA = list(map(int, sys.stdin.readline().rstrip().split()))\n\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n print(\"Possible\")\n for j in range(1, i+1):\n print(j)\n for j in range(i+1, N)[::-1]:\n print(j)\n sys.exit()\n\nprint(\"Impossible\")\n"
] | 8
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\nA = [int(a) for a in input().split()]\n",
"N, L = map(int, input().split())\nA = [int(a) for a in input().split()]\n\nfor i in :\n",
"N, L = map(int, input().split())\nA = [int(a) for a in input().split()]\n\nfor i in range(1, N):\n",
"N, L = map(int, input().split())\nA = [int(a) for a in input().split()]\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n print(\"Possible\")\n for j in range(1, i):\n print(j)\n for j in range(N-1, i, -1):\n print(j)\n print(i)\n break\n",
"N, L = map(int, input().split())\nA = [int(a) for a in input().split()]\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n print(\"Possible\")\n for j in range(1, i):\n print(j)\n for j in range(N-1, i, -1):\n print(j)\n print(i)\n break\nelse:\n",
"N, L = map(int, input().split())\nA = [int(a) for a in input().split()]\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n print(\"Possible\")\n for j in range(1, i):\n print(j)\n for j in range(N-1, i, -1):\n print(j)\n print(i)\n break\nelse:\n print(\"Impossible\")\n"
] | 8
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = map(int,input().split())\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor in :\n \n\nprint('Possible')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor in :\n \n\nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor in :\n \n\nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\nans.append(last)\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor in :\n \n\nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\nans.append(last)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in :\n \n\nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\nans.append(last)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate:\n \n\nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\nans.append(last)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate:\n if a+b >= L:\n last = i+1\n break\n\n\nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\nans.append(last)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate:\n if a+b >= L:\n last = i+1\n break\nelse:\n \n\nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\nans.append(last)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n last = i+1\n break\nelse:\n \n\nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\nans.append(last)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n last = i+1\n break\nelse:\n \n \nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\nans.append(last)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n last = i+1\n break\nelse:\n print('Impossible')\n \n\nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\nans.append(last)\nprint(*ans, sep='\\n')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = -1\nfor i,(a,b) in enumerate(zip(A,A[1:])):\n if a+b >= L:\n last = i+1\n break\nelse:\n print('Impossible')\n exit()\n\nprint('Possible')\nans = [n for n in range(1,last)] + [n for n in range(N-1,last,-1)]\nans.append(last)\nprint(*ans, sep='\\n')\n"
] | 17
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"add=0\n",
"n,l=map(int,input().split())\n\nadd=0\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in :\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in :\n \nif :\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in :\n \nif :\nprint(\"Possible\")\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in :\n \nif :\nprint(\"Possible\")\nfor i in :\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in :\n \nif :\nprint(\"Possible\")\nfor i in :\nfor i in :\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in :\n \nif :\nprint(\"Possible\")\nfor i in :\nfor i in :\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n \nif :\nprint(\"Possible\")\nfor i in :\nfor i in :\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n if A[i]+A[i-1]>=l:\n add=i+1\n break\nif :\nprint(\"Possible\")\nfor i in :\nfor i in :\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n if A[i]+A[i-1]>=l:\n add=i+1\n break\nif add==0:\nprint(\"Possible\")\nfor i in :\nfor i in :\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n if A[i]+A[i-1]>=l:\n add=i+1\n break\nif add==0:;\nprint(\"Possible\")\nfor i in :\nfor i in :\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n if A[i]+A[i-1]>=l:\n add=i+1\n break\nif add==0:;\nprint(\"Possible\")\nfor i in range(1,add-1):\nfor i in :\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n if A[i]+A[i-1]>=l:\n add=i+1\n break\nif add==0:;\nprint(\"Possible\")\nfor i in range(1,add-1):print(i)\nfor i in :\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n if A[i]+A[i-1]>=l:\n add=i+1\n break\nif add==0:;\nprint(\"Possible\")\nfor i in range(1,add-1):print(i)\nfor i in [::-1]:\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n if A[i]+A[i-1]>=l:\n add=i+1\n break\nif add==0:;\nprint(\"Possible\")\nfor i in range(1,add-1):print(i)\nfor i in [::-1]:print(i)\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n if A[i]+A[i-1]>=l:\n add=i+1\n break\nif add==0:print(\"Impossible\");\nprint(\"Possible\")\nfor i in range(1,add-1):print(i)\nfor i in [::-1]:print(i)\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n if A[i]+A[i-1]>=l:\n add=i+1\n break\nif add==0:print(\"Impossible\");exit()\nprint(\"Possible\")\nfor i in range(1,add-1):print(i)\nfor i in [::-1]:print(i)\nprint(add-1)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nadd=0\nfor i in range(1,n):\n if A[i]+A[i-1]>=l:\n add=i+1\n break\nif add==0:print(\"Impossible\");exit()\nprint(\"Possible\")\nfor i in range(1,add-1):print(i)\nfor i in [j for j in range(add,n)][::-1]:print(i)\nprint(add-1)\n"
] | 21
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n, l = map(int, input().split())\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in :\n \nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in :\n \nif :\n \n\nprint('Possible')\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in :\n \nif :\n \n\nprint('Possible')\nfor i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in :\n \nif :\n \n\nprint('Possible')\nfor i in :\n \n\nfor i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in :\n \nif :\n \n\nprint('Possible')\nfor i in :\n \n\nfor i in :\n \n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n \nif :\n \n\nprint('Possible')\nfor i in :\n \n\nfor i in :\n \n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n pos = i\n break\nif :\n \n\nprint('Possible')\nfor i in :\n \n\nfor i in :\n \n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n pos = i\n break\nif pos == -1:\n \n\nprint('Possible')\nfor i in :\n \n\nfor i in :\n \n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n pos = i\n break\nif pos == -1:\n \n \nprint('Possible')\nfor i in :\n \n\nfor i in :\n \n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n pos = i\n break\nif pos == -1:\n \n \nprint('Possible')\nfor i in range(pos):\n \n\nfor i in :\n \n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n pos = i\n break\nif pos == -1:\n \n \nprint('Possible')\nfor i in range(pos):\n print(i+1)\n\nfor i in :\n \n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n pos = i\n break\nif pos == -1:\n \n \nprint('Possible')\nfor i in range(pos):\n print(i+1)\n\nfor i in reversed:\n \n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n pos = i\n break\nif pos == -1:\n \n \nprint('Possible')\nfor i in range(pos):\n print(i+1)\n\nfor i in reversed:\n print(i+1)\n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n pos = i\n break\nif pos == -1:\n print('Impossible')\n \n\nprint('Possible')\nfor i in range(pos):\n print(i+1)\n\nfor i in reversed:\n print(i+1)\n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n pos = i\n break\nif pos == -1:\n print('Impossible')\n exit()\n\nprint('Possible')\nfor i in range(pos):\n print(i+1)\n\nfor i in reversed:\n print(i+1)\n\nprint(pos+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\n\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n pos = i\n break\nif pos == -1:\n print('Impossible')\n exit()\n\nprint('Possible')\nfor i in range(pos):\n print(i+1)\n\nfor i in reversed(range(pos+1,n-1)):\n print(i+1)\n\nprint(pos+1)\n"
] | 21
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in :\n \n\nif :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n \n\nif :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n \n \nif :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n \n \nif max_2 < L:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n \n \nif max_2 < L:\n print('Impossible')\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n \n \nif max_2 < L:\n print('Impossible')\nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n \n\nif max_2 < L:\n print('Impossible')\nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if :\n \n\nif max_2 < L:\n print('Impossible')\nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n \n\nif max_2 < L:\n print('Impossible')\nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n \n \nif max_2 < L:\n print('Impossible')\nelse:\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n \n \nif max_2 < L:\n print('Impossible')\nelse:\n print('Possible')\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n \n \nif max_2 < L:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n \n \nif max_2 < L:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n max_2 = l\n \n\nif max_2 < L:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n max_2 = l\n idx = i + 1\n\nif max_2 < L:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n max_2 = l\n idx = i + 1\n\nif max_2 < L:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1, idx + 1):\n \n for i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n max_2 = l\n idx = i + 1\n\nif max_2 < L:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1, idx + 1):\n print(i)\n for i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n max_2 = l\n idx = i + 1\n\nif max_2 < L:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1, idx + 1):\n print(i)\n for i in range(N-1, idx, -1):\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\nl = max_2 = A[0] + A[1]\nidx = 0\nfor i in range(N-2):\n l += A[i+2] - A[i]\n if l > max_2:\n max_2 = l\n idx = i + 1\n\nif max_2 < L:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1, idx + 1):\n print(i)\n for i in range(N-1, idx, -1):\n print(i)\n"
] | 25
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L=[int(x) for x in input().split()]\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in :\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in :\n \nif:\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n \nif:\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif:\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif(possible):\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif(possible):\n \n \nelse:\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif(possible):\n for i in :\n \n \nelse:\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif(possible):\n for i in :\n \n for i in :\n \n \nelse:\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif(possible):\n for i in :\n \n for i in :\n \n print(possible)\nelse:\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif(possible):\n for i in :\n \n for i in :\n \n print(possible)\nelse:\n print(\"Impossible\")\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif(possible):\n for i in range(1,possible):\n \n for i in :\n \n print(possible)\nelse:\n print(\"Impossible\")\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif(possible):\n for i in range(1,possible):\n print(i)\n for i in :\n \n print(possible)\nelse:\n print(\"Impossible\")\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif(possible):\n for i in range(1,possible):\n print(i)\n for i in range(N-possible-1):\n \n print(possible)\nelse:\n print(\"Impossible\")\n",
"N,L=[int(x) for x in input().split()]\na=[int(x) for x in input().split()]\npossible=0\nfor i in range(N-1):\n if(a[i]+a[i+1] >= L):\n print(\"Possible\")\n possible=i+1\n break\nif(possible):\n for i in range(1,possible):\n print(i)\n for i in range(N-possible-1):\n print(N-i-1)\n print(possible)\nelse:\n print(\"Impossible\")\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\na = [int(i) for i in input().split()]\n",
"N, L = map(int, input().split())\na = [int(i) for i in input().split()]\n\nfor i in :\n",
"N, L = map(int, input().split())\na = [int(i) for i in input().split()]\n\nfor i in range(N - 1) :\n",
"N, L = map(int, input().split())\na = [int(i) for i in input().split()]\n\nfor i in range(N - 1) :\n if a[i] + a[i+1] >= L :\n print('Possible')\n for j in range(i) :\n print(j + 1)\n for j in range(N - 2, i, -1) :\n print(j + 1)\n print(i + 1)\n break\n",
"N, L = map(int, input().split())\na = [int(i) for i in input().split()]\n\nfor i in range(N - 1) :\n if a[i] + a[i+1] >= L :\n print('Possible')\n for j in range(i) :\n print(j + 1)\n for j in range(N - 2, i, -1) :\n print(j + 1)\n print(i + 1)\n break\nelse :\n",
"N, L = map(int, input().split())\na = [int(i) for i in input().split()]\n\nfor i in range(N - 1) :\n if a[i] + a[i+1] >= L :\n print('Possible')\n for j in range(i) :\n print(j + 1)\n for j in range(N - 2, i, -1) :\n print(j + 1)\n print(i + 1)\n break\nelse :\n print('Impossible')\n"
] | 8
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = map(int,input().split())\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in :\n \nif :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n \nif :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif cmax>=L:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif cmax>=L:\n \n \nelse:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif cmax>=L:\n print(\"Possible\")\n \n \nelse:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif cmax>=L:\n print(\"Possible\")\n for i in :\n \n \nelse:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif cmax>=L:\n print(\"Possible\")\n for i in :\n \n for i in :\n \nelse:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif cmax>=L:\n print(\"Possible\")\n for i in :\n \n for i in :\n \nelse:\n print(\"Impossible\")\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif cmax>=L:\n print(\"Possible\")\n for i in range(1,ind):\n \n for i in :\n \nelse:\n print(\"Impossible\")\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif cmax>=L:\n print(\"Possible\")\n for i in range(1,ind):\n print(i)\n for i in :\n \nelse:\n print(\"Impossible\")\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif cmax>=L:\n print(\"Possible\")\n for i in range(1,ind):\n print(i)\n for i in range(N-1,ind-1,-1):\n \nelse:\n print(\"Impossible\")\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\nA.insert(0,0)\ncmax = 0\nind = -1\nfor i in range(1,N):\n if A[i]+A[i+1]>cmax:\n cmax = A[i]+A[i+1]\n ind = i\nif cmax>=L:\n print(\"Possible\")\n for i in range(1,ind):\n print(i)\n for i in range(N-1,ind-1,-1):\n print(i)\nelse:\n print(\"Impossible\")\n"
] | 20
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=True\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=True\nfor i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=True\nfor i in :\n \nif f:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=True\nfor i in range(n-1):\n \nif f:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=True\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n print(\"Possible\")\n print(\"\\n\".join([str(j) for j in range(1,i+1)]+[str(j) for j in range(n-1,i+1,-1)]+[str(i+1)]))\n f=False\n break\nif f:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nf=True\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n print(\"Possible\")\n print(\"\\n\".join([str(j) for j in range(1,i+1)]+[str(j) for j in range(n-1,i+1,-1)]+[str(i+1)]))\n f=False\n break\nif f:\n print(\"Impossible\")\n"
] | 9
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l = map(int,input().split())\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in :\n \n\nif :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n \n\nif :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif memo == -1:\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif memo == -1:\n print(\"Impossible\")\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif memo == -1:\n print(\"Impossible\")\nelse:\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif memo == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif memo == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif memo == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif memo == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(memo):\n \n for i in :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif memo == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(memo):\n print(i+1)\n for i in :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif memo == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(memo):\n print(i+1)\n for i in range(n-2,memo-1,-1):\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nmemo = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n memo = i\n\nif memo == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(memo):\n print(i+1)\n for i in range(n-2,memo-1,-1):\n print(i+1)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"def N():\n",
"def N(): \ndef NM():\n",
"def N(): \ndef NM():\ndef L():\n",
"def N(): \ndef NM():\ndef L():\ndef LN(n):\n",
"def N(): \ndef NM():\ndef L():\ndef LN(n):\ndef LL(n):\n",
"def N(): \ndef NM():\ndef L():\ndef LN(n):\ndef LL(n):\nn,l=NM()\n",
"def N(): \ndef NM():\ndef L():\ndef LN(n):\ndef LL(n):\nn,l=NM()\na=[0]+L()\n",
"def N(): \ndef NM():\ndef L():\ndef LN(n):\ndef LL(n):\nn,l=NM()\na=[0]+L()\nfor i in :\n",
"def N(): return int(input())\ndef NM():\ndef L():\ndef LN(n):\ndef LL(n):\nn,l=NM()\na=[0]+L()\nfor i in :\n",
"def N(): return int(input())\ndef NM():return map(int,input().split())\ndef L():\ndef LN(n):\ndef LL(n):\nn,l=NM()\na=[0]+L()\nfor i in :\n",
"def N(): return int(input())\ndef NM():return map(int,input().split())\ndef L():return list(NM())\ndef LN(n):\ndef LL(n):\nn,l=NM()\na=[0]+L()\nfor i in :\n",
"def N(): return int(input())\ndef NM():return map(int,input().split())\ndef L():return list(NM())\ndef LN(n):return [N() for i in range(n)]\ndef LL(n):\nn,l=NM()\na=[0]+L()\nfor i in :\n",
"def N(): return int(input())\ndef NM():return map(int,input().split())\ndef L():return list(NM())\ndef LN(n):return [N() for i in range(n)]\ndef LL(n):return [L() for i in range(n)]\nn,l=NM()\na=[0]+L()\nfor i in :\n",
"def N(): return int(input())\ndef NM():return map(int,input().split())\ndef L():return list(NM())\ndef LN(n):return [N() for i in range(n)]\ndef LL(n):return [L() for i in range(n)]\nn,l=NM()\na=[0]+L()\nfor i in range(1,n):\n",
"def N(): return int(input())\ndef NM():return map(int,input().split())\ndef L():return list(NM())\ndef LN(n):return [N() for i in range(n)]\ndef LL(n):return [L() for i in range(n)]\nn,l=NM()\na=[0]+L()\nfor i in range(1,n):\n if a[i]+a[i+1]>=l:\n print(\"Possible\")\n for j in range(1,i):\n print(j)\n for j in range(n-1,i-1,-1):\n print(j)\n break\n",
"def N(): return int(input())\ndef NM():return map(int,input().split())\ndef L():return list(NM())\ndef LN(n):return [N() for i in range(n)]\ndef LL(n):return [L() for i in range(n)]\nn,l=NM()\na=[0]+L()\nfor i in range(1,n):\n if a[i]+a[i+1]>=l:\n print(\"Possible\")\n for j in range(1,i):\n print(j)\n for j in range(n-1,i-1,-1):\n print(j)\n break\nelse:\n",
"def N(): return int(input())\ndef NM():return map(int,input().split())\ndef L():return list(NM())\ndef LN(n):return [N() for i in range(n)]\ndef LL(n):return [L() for i in range(n)]\nn,l=NM()\na=[0]+L()\nfor i in range(1,n):\n if a[i]+a[i+1]>=l:\n print(\"Possible\")\n for j in range(1,i):\n print(j)\n for j in range(n-1,i-1,-1):\n print(j)\n break\nelse:\n print(\"Impossible\")\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int, input().split())\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in :\n \nif :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in :\n \nif :\n \nprint('Possible')\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in :\n \nif :\n \nprint('Possible')\nfor i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in :\n \nif :\n \nprint('Possible')\nfor i in :\n \nfor i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in range(n-1):\n \nif :\n \nprint('Possible')\nfor i in :\n \nfor i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n f = i\n break\nif :\n \nprint('Possible')\nfor i in :\n \nfor i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n f = i\n break\nif f == -1:\n \nprint('Possible')\nfor i in :\n \nfor i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n f = i\n break\nif f == -1:\n \n \nprint('Possible')\nfor i in :\n \nfor i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n f = i\n break\nif f == -1:\n \n \nprint('Possible')\nfor i in range(1,f+1,1):\n \nfor i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n f = i\n break\nif f == -1:\n \n \nprint('Possible')\nfor i in range(1,f+1,1):\n print(i)\nfor i in :\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n f = i\n break\nif f == -1:\n \n \nprint('Possible')\nfor i in range(1,f+1,1):\n print(i)\nfor i in range(n-1,f,-1):\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n f = i\n break\nif f == -1:\n \n \nprint('Possible')\nfor i in range(1,f+1,1):\n print(i)\nfor i in range(n-1,f,-1):\n print(i)\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n f = i\n break\nif f == -1:\n print('Impossible')\n \nprint('Possible')\nfor i in range(1,f+1,1):\n print(i)\nfor i in range(n-1,f,-1):\n print(i)\n",
"n,l=map(int, input().split())\na=list(map(int, input().split()))\n\nf = -1\nfor i in range(n-1):\n if a[i] + a[i+1] >= l:\n f = i\n break\nif f == -1:\n print('Impossible')\n exit()\nprint('Possible')\nfor i in range(1,f+1,1):\n print(i)\nfor i in range(n-1,f,-1):\n print(i)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = map(int,input().split())\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\nlastknot = None\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\nlastknot = None\n\nfor i in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\nlastknot = None\n\nfor i in :\n \n\nif untiable:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\nlastknot = None\n\nfor i in range(N-1):\n \n\nif untiable:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\nlastknot = None\n\nfor i in range(N-1):\n if A[i]+A[i+1] >= L:\n untiable = True\n lastknot = i+1\n break\n\nif untiable:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\nlastknot = None\n\nfor i in range(N-1):\n if A[i]+A[i+1] >= L:\n untiable = True\n lastknot = i+1\n break\n\nif untiable:\n \n \nelse:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\nlastknot = None\n\nfor i in range(N-1):\n if A[i]+A[i+1] >= L:\n untiable = True\n lastknot = i+1\n break\n\nif untiable:\n ans = [i for i in range(1,lastknot)] + [i for i in range(lastknot+1,N)[::-1]] + [lastknot]\n \n \nelse:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\nlastknot = None\n\nfor i in range(N-1):\n if A[i]+A[i+1] >= L:\n untiable = True\n lastknot = i+1\n break\n\nif untiable:\n ans = [i for i in range(1,lastknot)] + [i for i in range(lastknot+1,N)[::-1]] + [lastknot]\n print('Possible')\n \n\nelse:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\nlastknot = None\n\nfor i in range(N-1):\n if A[i]+A[i+1] >= L:\n untiable = True\n lastknot = i+1\n break\n\nif untiable:\n ans = [i for i in range(1,lastknot)] + [i for i in range(lastknot+1,N)[::-1]] + [lastknot]\n print('Possible')\n print('\\n'.join(map(str,ans)))\n\nelse:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nuntiable = False\nlastknot = None\n\nfor i in range(N-1):\n if A[i]+A[i+1] >= L:\n untiable = True\n lastknot = i+1\n break\n\nif untiable:\n ans = [i for i in range(1,lastknot)] + [i for i in range(lastknot+1,N)[::-1]] + [lastknot]\n print('Possible')\n print('\\n'.join(map(str,ans)))\n\nelse:\n print('Impossible')\n"
] | 14
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"def main():\n",
"def main():\n \n\nif :\n",
"def main():\n \n \nif :\n",
"def main():\n \n \nif __name__ == \"__main__\":\n",
"def main():\n \n \nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L, *A = map(int, open(0).read().split())\n \n \nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L, *A = map(int, open(0).read().split())\n L = [i for i,(x,y) in enumerate(zip(A, A[1:]), 1) if x+y >= L]\n \n\nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L, *A = map(int, open(0).read().split())\n L = [i for i,(x,y) in enumerate(zip(A, A[1:]), 1) if x+y >= L]\n if L:\n \n \nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L, *A = map(int, open(0).read().split())\n L = [i for i,(x,y) in enumerate(zip(A, A[1:]), 1) if x+y >= L]\n if L:\n \n \nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L, *A = map(int, open(0).read().split())\n L = [i for i,(x,y) in enumerate(zip(A, A[1:]), 1) if x+y >= L]\n if L:\n \n \n else:\n \n\nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L, *A = map(int, open(0).read().split())\n L = [i for i,(x,y) in enumerate(zip(A, A[1:]), 1) if x+y >= L]\n if L:\n print(\"Possible\")\n \n \n else:\n \n\nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L, *A = map(int, open(0).read().split())\n L = [i for i,(x,y) in enumerate(zip(A, A[1:]), 1) if x+y >= L]\n if L:\n print(\"Possible\")\n B = [i for i in range(L[0], N)]+[i for i in range(1,L[0])][::-1]\n \n else:\n \n\nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L, *A = map(int, open(0).read().split())\n L = [i for i,(x,y) in enumerate(zip(A, A[1:]), 1) if x+y >= L]\n if L:\n print(\"Possible\")\n B = [i for i in range(L[0], N)]+[i for i in range(1,L[0])][::-1]\n print(*B[::-1], sep=\"\\n\")\n else:\n \n\nif __name__ == \"__main__\":\n main()\n",
"def main():\n N, L, *A = map(int, open(0).read().split())\n L = [i for i,(x,y) in enumerate(zip(A, A[1:]), 1) if x+y >= L]\n if L:\n print(\"Possible\")\n B = [i for i in range(L[0], N)]+[i for i in range(1,L[0])][::-1]\n print(*B[::-1], sep=\"\\n\")\n else:\n print(\"Impossible\")\n\n\nif __name__ == \"__main__\":\n main()\n"
] | 15
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l = map(int,input().split())\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in :\n \n\nif :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in :\n \n\nif :\n \n\nprint(\"Possible\")\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in :\n \n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in :\n \n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in :\n \n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n \nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n \n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n \nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n \n \nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n \nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n \n \nif last_undo ==-1:\n \n\nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n \nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n \n \nif last_undo ==-1:\n \n \nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n \nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n \n \nif last_undo ==-1:\n \n \nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n \nfor i in :\n \nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n \n \nif last_undo ==-1:\n \n \nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in :\n \nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n \n \nif last_undo ==-1:\n \n \nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in [::-1]:\n \nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n \n \nif last_undo ==-1:\n \n \nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in [::-1]:\n print(i)\nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n renzoku_length[i] = a[i]+a[i-1]\n \n\nif last_undo ==-1:\n \n \nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in [::-1]:\n print(i)\nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n renzoku_length[i] = a[i]+a[i-1]\n if :\n \n\nif last_undo ==-1:\n \n \nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in [::-1]:\n print(i)\nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n renzoku_length[i] = a[i]+a[i-1]\n if :\n \n\nif last_undo ==-1:\n print(\"Impossible\")\n \n\nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in [::-1]:\n print(i)\nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n renzoku_length[i] = a[i]+a[i-1]\n if :\n \n\nif last_undo ==-1:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in [::-1]:\n print(i)\nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n renzoku_length[i] = a[i]+a[i-1]\n if :\n \n\nif last_undo ==-1:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in range(last_undo+1,n)[::-1]:\n print(i)\nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n renzoku_length[i] = a[i]+a[i-1]\n if renzoku_length[i]>=l:\n \n\nif last_undo ==-1:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in range(last_undo+1,n)[::-1]:\n print(i)\nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n renzoku_length[i] = a[i]+a[i-1]\n if renzoku_length[i]>=l:\n \n break\n\nif last_undo ==-1:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in range(last_undo+1,n)[::-1]:\n print(i)\nprint(last_undo)\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n\nrenzoku_length = [0]*n\nlast_undo = -1\nfor i in range(1,n):\n renzoku_length[i] = a[i]+a[i-1]\n if renzoku_length[i]>=l:\n last_undo =i\n break\n\nif last_undo ==-1:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,last_undo):\n print(i)\nfor i in range(last_undo+1,n)[::-1]:\n print(i)\nprint(last_undo)\n"
] | 27
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"pos=0\ntmp=0\n",
"n,l=map(int,input().split())\n\npos=0\ntmp=0\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in :\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in :\n \nif tmp<l:\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n \nif tmp<l:\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n for i in :\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n for i in :\n \n for i in :\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n for i in :\n \n for i in :\n \n ans.append(pos+1)\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n for i in :\n \n for i in :\n \n ans.append(pos+1)\n for i in :\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n for i in range(pos):\n \n for i in :\n \n ans.append(pos+1)\n for i in :\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n for i in range(pos):\n ans.append(i+1)\n for i in :\n \n ans.append(pos+1)\n for i in :\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n for i in range(pos):\n ans.append(i+1)\n for i in range(n-1,pos+1,-1):\n \n ans.append(pos+1)\n for i in :\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n for i in range(pos):\n ans.append(i+1)\n for i in range(n-1,pos+1,-1):\n ans.append(i)\n ans.append(pos+1)\n for i in :\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n for i in range(pos):\n ans.append(i+1)\n for i in range(n-1,pos+1,-1):\n ans.append(i)\n ans.append(pos+1)\n for i in range(n-1):\n",
"n,l=map(int,input().split())\narr=list(map(int,input().split()))\npos=0\ntmp=0\nfor i in range(n-1):\n if (arr[i]+arr[i+1])>tmp:\n pos=i\n tmp=(arr[i]+arr[i+1])\nif tmp<l:\n print('Impossible')\nelse:\n print('Possible')\n ans=[]\n for i in range(pos):\n ans.append(i+1)\n for i in range(n-1,pos+1,-1):\n ans.append(i)\n ans.append(pos+1)\n for i in range(n-1):\n print(ans[i])\n"
] | 22
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"from import deque\n",
"from import deque\ndef solve():\n",
"from import deque\ndef solve():\n \nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n \nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n \n \nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n \n \nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n \n \nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n \n \nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in :\n \n \nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in :\n \n \n for i in :\n \n \nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in :\n \n \n for i in :\n \n for i in :\n \n \nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in :\n \n \n for i in :\n \n for i in :\n \n ans.append(ind+1)\n \nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in :\n \n \n for i in :\n \n for i in :\n \n ans.append(ind+1)\n return ans\nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in range(N-1):\n \n \n for i in :\n \n for i in :\n \n ans.append(ind+1)\n return ans\nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in range(N-1):\n if A[i]+A[i+1]>=L:\n ind = i\n break\n \n for i in :\n \n for i in :\n \n ans.append(ind+1)\n return ans\nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in range(N-1):\n if A[i]+A[i+1]>=L:\n ind = i\n break\n else:\n \n for i in :\n \n for i in :\n \n ans.append(ind+1)\n return ans\nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in range(N-1):\n if A[i]+A[i+1]>=L:\n ind = i\n break\n else:\n \n for i in range(1,ind+1):\n \n for i in :\n \n ans.append(ind+1)\n return ans\nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in range(N-1):\n if A[i]+A[i+1]>=L:\n ind = i\n break\n else:\n \n for i in range(1,ind+1):\n ans.append(i)\n for i in :\n \n ans.append(ind+1)\n return ans\nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in range(N-1):\n if A[i]+A[i+1]>=L:\n ind = i\n break\n else:\n \n for i in range(1,ind+1):\n ans.append(i)\n for i in range(N-1,ind+1,-1):\n \n ans.append(ind+1)\n return ans\nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in range(N-1):\n if A[i]+A[i+1]>=L:\n ind = i\n break\n else:\n \n for i in range(1,ind+1):\n ans.append(i)\n for i in range(N-1,ind+1,-1):\n ans.append(i)\n ans.append(ind+1)\n return ans\nprint(*solve(),sep='\\n')\n",
"from collections import deque\ndef solve():\n ans = ['Possible']\n N, L = map(int, input().split())\n A = list(map(int, input().split()))\n for i in range(N-1):\n if A[i]+A[i+1]>=L:\n ind = i\n break\n else:\n return ['Impossible']\n for i in range(1,ind+1):\n ans.append(i)\n for i in range(N-1,ind+1,-1):\n ans.append(i)\n ans.append(ind+1)\n return ans\nprint(*solve(),sep='\\n')\n"
] | 22
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"import sys\n",
"import sys\nN, L = map(int, input().split())\n",
"import sys\nN, L = map(int, input().split())\nA = [int(_) for _ in input().split()]\n",
"import sys\nN, L = map(int, input().split())\nA = [int(_) for _ in input().split()]\n\n\nfor n in :\n",
"import sys\nN, L = map(int, input().split())\nA = [int(_) for _ in input().split()]\n\n\nfor n in :\n \nprint('Impossible')\n",
"import sys\nN, L = map(int, input().split())\nA = [int(_) for _ in input().split()]\n\n\nfor n in range(N - 1):\n \nprint('Impossible')\n",
"import sys\nN, L = map(int, input().split())\nA = [int(_) for _ in input().split()]\n\n\nfor n in range(N - 1):\n if A[n] + A[n + 1] >= L:\n print('Possible')\n tmp_ind = n + 1\n for m in range(1, tmp_ind):\n print(m)\n for m in range(N - 1, tmp_ind, -1):\n print(m)\n print(tmp_ind)\n sys.exit()\nprint('Impossible')\n"
] | 8
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"import sys\n",
"import sys\nn, l = map(int, input().split())\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in :\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in :\n \n\nif :\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n \n\nif :\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif :\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif key == -1:\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif key == -1:\n print(\"Impossible\")\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif key == -1:\n print(\"Impossible\")\nelse:\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif key == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif key == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif key == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif key == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(key):\n \n for i in :\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif key == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(key):\n print(i+1)\n for i in :\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif key == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(key):\n print(i+1)\n for i in range(n-1, key, -1):\n",
"import sys\nn, l = map(int, input().split())\na = [int(x) for x in input().split()]\n\nkey = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n key = i\n break\n\nif key == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(key):\n print(i+1)\n for i in range(n-1, key, -1):\n print(i)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L, *A = map(int, open(0).read().split())\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in :\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in :\n \n\nif :\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n \n\nif :\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif :\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\nelse:\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in :\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in :\n \n for j in :\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in :\n \n for j in :\n \n print(k)\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in range(1, k):\n \n for j in :\n \n print(k)\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in range(1, k):\n print(j)\n for j in :\n \n print(k)\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in range(1, k):\n print(j)\n for j in reversed:\n \n print(k)\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in range(1, k):\n print(j)\n for j in reversed:\n print(j)\n print(k)\n",
"N, L, *A = map(int, open(0).read().split())\n\nk = -1\nfor i in range(N - 1):\n if A[i] + A[i + 1] >= L:\n k = i + 1\n break\n\nif k == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in range(1, k):\n print(j)\n for j in reversed(range(k + 1, N)):\n print(j)\n print(k)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"def resolve():\n",
"def resolve():\n \n\nif :\n",
"def resolve():\n \n \nif :\n",
"def resolve():\n \n \nif __name__ == \"__main__\":\n",
"def resolve():\n \n \nif __name__ == \"__main__\":\n resolve()\n",
"def resolve():\n n, l = map(int, input().split())\n \n \nif __name__ == \"__main__\":\n resolve()\n",
"def resolve():\n n, l = map(int, input().split())\n a = list(map(int, input().split()))\n \n \nif __name__ == \"__main__\":\n resolve()\n",
"def resolve():\n n, l = map(int, input().split())\n a = list(map(int, input().split()))\n for i in :\n \n \nif __name__ == \"__main__\":\n resolve()\n",
"def resolve():\n n, l = map(int, input().split())\n a = list(map(int, input().split()))\n for i in :\n \n print(\"Impossible\")\n\n\nif __name__ == \"__main__\":\n resolve()\n",
"def resolve():\n n, l = map(int, input().split())\n a = list(map(int, input().split()))\n for i in range(n - 1):\n \n print(\"Impossible\")\n\n\nif __name__ == \"__main__\":\n resolve()\n",
"def resolve():\n n, l = map(int, input().split())\n a = list(map(int, input().split()))\n for i in range(n - 1):\n if a[i] + a[i + 1] >= l:\n print(\"Possible\")\n for j in range(i):\n print(j + 1)\n for j in range(n - 1, i, -1):\n print(j)\n return 0\n print(\"Impossible\")\n\n\nif __name__ == \"__main__\":\n resolve()\n"
] | 12
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"o = 0\n",
"n,l = map(int,input().split())\n\no = 0\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in :\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in :\n \nif :\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n \nif :\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n \n \nif :\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n \n \nif flag == 0:\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n \n \nif flag == 0:\n \n \nelse:\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n \nif flag == 0:\n \n \nelse:\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if :\n \nif flag == 0:\n \n \nelse:\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if :\n \nif flag == 0:\n print('Possible')\n \n \nelse:\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if :\n \nif flag == 0:\n print('Possible')\n for j in :\n \n \nelse:\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if :\n \nif flag == 0:\n print('Possible')\n for j in :\n \n for k in :\n \n \nelse:\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if :\n \nif flag == 0:\n print('Possible')\n for j in :\n \n for k in :\n \n print(o)\nelse:\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if :\n \nif flag == 0:\n print('Possible')\n for j in :\n \n for k in :\n \n print(o)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if lr >= l:\n \nif flag == 0:\n print('Possible')\n for j in :\n \n for k in :\n \n print(o)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if lr >= l:\n o = i\n \n break\nif flag == 0:\n print('Possible')\n for j in :\n \n for k in :\n \n print(o)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if lr >= l:\n o = i\n \n break\nif flag == 0:\n print('Possible')\n for j in range(1,o):\n \n for k in :\n \n print(o)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if lr >= l:\n o = i\n \n break\nif flag == 0:\n print('Possible')\n for j in range(1,o):\n print(j)\n for k in :\n \n print(o)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if lr >= l:\n o = i\n \n break\nif flag == 0:\n print('Possible')\n for j in range(1,o):\n print(j)\n for k in range(n-1,o,-1):\n \n print(o)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if lr >= l:\n o = i\n \n break\nif flag == 0:\n print('Possible')\n for j in range(1,o):\n print(j)\n for k in range(n-1,o,-1):\n print(k)\n print(o)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nr = list(map(int,input().split()))\no = 0\nflag = 1\nfor i in range(1,n):\n lr = r[i-1] +r[i]\n if lr >= l:\n o = i\n flag = 0\n break\nif flag == 0:\n print('Possible')\n for j in range(1,o):\n print(j)\n for k in range(n-1,o,-1):\n print(k)\n print(o)\nelse:\n print('Impossible')\n"
] | 25
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n, l = map(int, input().split())\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in :\n \nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in range(n - 1):\n \nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in range(n - 1):\n if a[i] + a[i + 1] >= l:\n ans = i + 1\nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in range(n - 1):\n if a[i] + a[i + 1] >= l:\n ans = i + 1\nif ans == :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in range(n - 1):\n if a[i] + a[i + 1] >= l:\n ans = i + 1\nif ans == :\n print(\"Impossible\")\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in range(n - 1):\n if a[i] + a[i + 1] >= l:\n ans = i + 1\nif ans == :\n print(\"Impossible\")\nelse:\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in range(n - 1):\n if a[i] + a[i + 1] >= l:\n ans = i + 1\nif ans == float(\"inf\"):\n print(\"Impossible\")\nelse:\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in range(n - 1):\n if a[i] + a[i + 1] >= l:\n ans = i + 1\nif ans == float(\"inf\"):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in range(n - 1):\n if a[i] + a[i + 1] >= l:\n ans = i + 1\nif ans == float(\"inf\"):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n print(*range(1, ans), sep=\"\\n\")\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in range(n - 1):\n if a[i] + a[i + 1] >= l:\n ans = i + 1\nif ans == float(\"inf\"):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n print(*range(1, ans), sep=\"\\n\")\n print(*range(n - 1, ans, -1), sep=\"\\n\")\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nans = float(\"inf\")\nfor i in range(n - 1):\n if a[i] + a[i + 1] >= l:\n ans = i + 1\nif ans == float(\"inf\"):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n print(*range(1, ans), sep=\"\\n\")\n print(*range(n - 1, ans, -1), sep=\"\\n\")\n print(ans)\n"
] | 16
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L=map(int,input().split())\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n \nlasti=-1\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n \nlasti=-1\nfor i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n \nlasti=-1\nfor i in :\n \nif :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n \n \nlasti=-1\nfor i in :\n \nif :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n \n \nlasti=-1\nfor i in range(N-1):\n \nif :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n \n \nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n \n \nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n \n \nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n \n \nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if :\n \n \nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if :\n \n \n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n \n \n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n \n \n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n \n \n else:\n \n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n \n \n else:\n \n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n print('Possible')\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n \n \n else:\n \n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n \n \n else:\n \n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n print('Possible')\n \n else:\n \n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n print('Possible')\n print(1)\n else:\n \n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n print('Possible')\n print(1)\n else:\n print('Impossible')\n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n print('Possible')\n print(1)\n else:\n print('Impossible')\n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,lasti):\n \n for i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n print('Possible')\n print(1)\n else:\n print('Impossible')\n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,lasti):\n print(i)\n for i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n print('Possible')\n print(1)\n else:\n print('Impossible')\n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,lasti):\n print(i)\n for i in range(N-1,lasti-1,-1):\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nif N==2:\n if sum(A)>=L:\n print('Possible')\n print(1)\n else:\n print('Impossible')\n exit(0)\nlasti=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n lasti=i+1\n break\nif lasti==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,lasti):\n print(i)\n for i in range(N-1,lasti-1,-1):\n print(i)\n"
] | 28
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"#!/usr/bin/env python3\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif :\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n \n \nelse:\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n print(\"Possible\")\n \n \nelse:\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n print(\"Possible\")\n for i in :\n \n \nelse:\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n print(\"Possible\")\n for i in :\n \n for j in :\n \nelse:\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n print(\"Possible\")\n for i in :\n \n for j in :\n \nelse:\n print(\"Impossible\")\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n print(\"Possible\")\n for i in range(maxind):\n \n for j in :\n \nelse:\n print(\"Impossible\")\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n print(\"Possible\")\n for i in range(maxind):\n print(i+1)\n for j in :\n \nelse:\n print(\"Impossible\")\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n print(\"Possible\")\n for i in range(maxind):\n print(i+1)\n for j in reversed:\n \nelse:\n print(\"Impossible\")\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n print(\"Possible\")\n for i in range(maxind):\n print(i+1)\n for j in reversed:\n print(j+1)\nelse:\n print(\"Impossible\")\n",
"#!/usr/bin/env python3\n\nN, L = map(int, input().split())\na = list(map(int, input().split()))\n\nsums = [a[i]+a[i+1] for i in range(N-1)]\n\nmaxind, maxval = max(enumerate(sums), key=lambda x:x[1])\nif maxval >= L:\n print(\"Possible\")\n for i in range(maxind):\n print(i+1)\n for j in reversed(range(maxind, N-1)):\n print(j+1)\nelse:\n print(\"Impossible\")\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"x=-1\n",
"import sys\n\n\nx=-1\n",
"import sys\ninput=sys.stdin.readline\n\n\nx=-1\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\n\n\nx=-1\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in :\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in :\n \n\nif x==-1:\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n \n\nif x==-1:\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n \n print(x+1)\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(x):\n \n for i in :\n \n print(x+1)\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(x):\n print(i+1)\n for i in :\n \n print(x+1)\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(x):\n print(i+1)\n for i in range(n-2,x,-1):\n \n print(x+1)\n",
"import sys\ninput=sys.stdin.readline\n\nn,l=map(int,input().split())\na=list(map(int,input().split()))\n\nx=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n x=i\n break\n\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(x):\n print(i+1)\n for i in range(n-2,x,-1):\n print(i+1)\n print(x+1)\n"
] | 20
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"from import deque\n",
"from import deque\nn, l = map(int, input().split())\n",
"from import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\n",
"from import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\n",
"from import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in :\n",
"from import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in :\n \nif :\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in :\n \nif :\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n \nif :\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif :\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n print(\"Impossible\")\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n print(\"Impossible\")\nelse:\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n \n print(last)\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1, last):\n \n for i in :\n \n print(last)\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1, last):\n print(i)\n for i in :\n \n print(last)\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1, last):\n print(i)\n for i in range(n-1,last,-1):\n \n print(last)\n",
"from collections import deque\nn, l = map(int, input().split())\na = list(map(int, input().split()))\nlast = -1\nfor i in range(1,n):\n if a[i-1] + a[i] >= l :\n last = i\nif last == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1, last):\n print(i)\n for i in range(n-1,last,-1):\n print(i)\n print(last)\n"
] | 21
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l = map(int, input().split())\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in :\n \n\nif :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in :\n \n\nif :\n \n\nprint(\"Possible\")\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in :\n \n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in :\n \n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n \n\nfor i in :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n \n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n \n\nfor i in :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n \n\nfor i in :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n \n\nprint(\"Possible\")\n\nfor i in :\n \n\nfor i in :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n \n \nprint(\"Possible\")\n\nfor i in :\n \n\nfor i in :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n \n \nprint(\"Possible\")\n\nfor i in range(1,n):\n \n\nfor i in :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n \n \nprint(\"Possible\")\n\nfor i in range(1,n):\n \n \nfor i in :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n \n \nprint(\"Possible\")\n\nfor i in range(1,n):\n \n \nfor i in reversed:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n print(\"Impossible\")\n \n\nprint(\"Possible\")\n\nfor i in range(1,n):\n \n \nfor i in reversed:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,n):\n \n \nfor i in reversed:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,n):\n if i>ind:\n break\n \n\nfor i in reversed:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,n):\n if i>ind:\n break\n print(i)\n\nfor i in reversed:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,n):\n if i>ind:\n break\n print(i)\n\nfor i in reversed(range(n)):\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,n):\n if i>ind:\n break\n print(i)\n\nfor i in reversed(range(n)):\n if :\n break\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,n):\n if i>ind:\n break\n print(i)\n\nfor i in reversed(range(n)):\n if :\n break\n print(i)\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n\nsumax=0\nfor i in range(n-1):\n if sumax < a[i]+a[i+1]:\n sumax=a[i]+a[i+1]\n ind=i\n\nif sumax < l:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1,n):\n if i>ind:\n break\n print(i)\n\nfor i in reversed(range(n)):\n if i==ind:\n break\n print(i)\n"
] | 24
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"rh=-1\n",
"n,l= map(int,input().split())\n\nrh=-1\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in :\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in :\n \n\nprint('Possible')\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in :\n \n\nprint('Possible')\nif rh>0:\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in :\n \n\nprint('Possible')\nif rh>0:\n \nif :\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in :\n \n\nprint('Possible')\nif rh>0:\n \nif :\n \nprint(rh+1)\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in range(n-1):\n \n\nprint('Possible')\nif rh>0:\n \nif :\n \nprint(rh+1)\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n rh=i\n break\n\nprint('Possible')\nif rh>0:\n \nif :\n \nprint(rh+1)\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n rh=i\n break\nelse:\n \nprint('Possible')\nif rh>0:\n \nif :\n \nprint(rh+1)\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n rh=i\n break\nelse:\n \nprint('Possible')\nif rh>0:\n for i in range(rh):print(i+1)\nif :\n \nprint(rh+1)\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n rh=i\n break\nelse:\n \nprint('Possible')\nif rh>0:\n for i in range(rh):print(i+1)\nif rh+1<n:\n \nprint(rh+1)\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n rh=i\n break\nelse:\n \nprint('Possible')\nif rh>0:\n for i in range(rh):print(i+1)\nif rh+1<n:\n for i in range(n-1,rh+1,-1):print(i)\nprint(rh+1)\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n rh=i\n break\nelse:\n \n \nprint('Possible')\nif rh>0:\n for i in range(rh):print(i+1)\nif rh+1<n:\n for i in range(n-1,rh+1,-1):print(i)\nprint(rh+1)\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n rh=i\n break\nelse:\n print('Impossible')\n \nprint('Possible')\nif rh>0:\n for i in range(rh):print(i+1)\nif rh+1<n:\n for i in range(n-1,rh+1,-1):print(i)\nprint(rh+1)\n",
"n,l= map(int,input().split())\na= list(map(int,input().split()))\nrh=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n rh=i\n break\nelse:\n print('Impossible')\n exit()\nprint('Possible')\nif rh>0:\n for i in range(rh):print(i+1)\nif rh+1<n:\n for i in range(n-1,rh+1,-1):print(i)\nprint(rh+1)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfor i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfor i in range(n-1):\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n print('Possible')\n ans=[i+1]+list(range(i,0,-1))+list(range(i+2,n))\n print(*ans[::-1],sep='\\n')\n break\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n print('Possible')\n ans=[i+1]+list(range(i,0,-1))+list(range(i+2,n))\n print(*ans[::-1],sep='\\n')\n break\nelse:print('Impossible')\n"
] | 7
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na=list(map(int, input().split()))\n",
"n,l=map(int,input().split())\na=list(map(int, input().split()))\nfor i in :\n",
"n,l=map(int,input().split())\na=list(map(int, input().split()))\nfor i in :\n \nprint(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int, input().split()))\nfor i in range(n-1):\n \nprint(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int, input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n print(\"Possible\")\n for j in range(i):print(j+1)\n for j in range(n-1,i,-1):print(j)\n exit()\nprint(\"Impossible\")\n"
] | 7
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in :\n \nif :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n \nif :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif last==-1:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif last==-1:\n print(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif last==-1:\n print(\"Impossible\")\nelse:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,last):\n \n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,last):\n print(i)\n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,last):\n print(i)\n for i in range(len(a)-1,last-1,-1):\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\n break\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,last):\n print(i)\n for i in range(len(a)-1,last-1,-1):\n print(i)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nprint(\"Possible\")\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nprint(\"Possible\")\nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\n\n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1, X):\n \nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in range(N-1, X-1, -1):\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in range(N-1, X-1, -1):\n print(i)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n \nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in range(N-1, X-1, -1):\n print(i)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n print(\"Impossible\")\n \n\nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in range(N-1, X-1, -1):\n print(i)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in range(N-1, X-1, -1):\n print(i)\n"
] | 17
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"import sys\n",
"import sys\nimport os\n",
"import sys\nimport os\n\nN, L = map(int,input().split())\n",
"import sys\nimport os\n\nN, L = map(int,input().split())\nA = list(map(int,input().split()))\n",
"import sys\nimport os\n\nN, L = map(int,input().split())\nA = list(map(int,input().split()))\nfor i in :\n",
"import sys\nimport os\n\nN, L = map(int,input().split())\nA = list(map(int,input().split()))\nfor i in :\n \nprint(\"Impossible\")\n",
"import sys\nimport os\n\nN, L = map(int,input().split())\nA = list(map(int,input().split()))\nfor i in range(N-1):\n \nprint(\"Impossible\")\n",
"import sys\nimport os\n\nN, L = map(int,input().split())\nA = list(map(int,input().split()))\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n print(\"Possible\")\n for j in range(i):\n print(j+1)\n for j in range(N-1,i,-1):\n print(j)\n sys.exit()\nprint(\"Impossible\")\n"
] | 9
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in :\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in :\n \nif :\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n \nif :\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif :\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif length<l:\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif length<l:\n print(\"Impossible\")\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif length<l:\n print(\"Impossible\")\nelse:\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif length<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif length<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif length<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif length<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,knot):\n \n for i in :\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif length<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,knot):\n print(i)\n for i in :\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif length<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,knot):\n print(i)\n for i in range(knot,n):\n",
"n,l=map(int,input().split())\nA=[int(i) for i in input().split()]\nlength,knot=A[0]+A[1],1\nfor i in range(n-2):\n if A[i+1]+A[i+2]>length:\n length=A[i+1]+A[i+2]\n knot=i+2\nif length<l:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,knot):\n print(i)\n for i in range(knot,n):\n print(n+knot-i-1)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = [int(x) for x in input().split()]\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif:\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\nelse:\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\nelse:\n print('Possible')\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\nelse:\n print('Possible')\n last = A2.index(max(A2))\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\nelse:\n print('Possible')\n last = A2.index(max(A2))\n for i in :\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\nelse:\n print('Possible')\n last = A2.index(max(A2))\n for i in :\n \n for i in :\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\nelse:\n print('Possible')\n last = A2.index(max(A2))\n for i in :\n \n for i in :\n \n print(last+1)\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\nelse:\n print('Possible')\n last = A2.index(max(A2))\n for i in range(last):\n \n for i in :\n \n print(last+1)\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\nelse:\n print('Possible')\n last = A2.index(max(A2))\n for i in range(last):\n print(i+1)\n for i in :\n \n print(last+1)\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\nelse:\n print('Possible')\n last = A2.index(max(A2))\n for i in range(last):\n print(i+1)\n for i in range(N-1,last+1,-1):\n \n print(last+1)\n",
"N,L = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA2 = [x+A[ind+1] for ind,x in enumerate(A[:-1])]\nA2.index(max(A2))\nif(max(A2)<L):\n print('Impossible')\nelse:\n print('Possible')\n last = A2.index(max(A2))\n for i in range(last):\n print(i+1)\n for i in range(N-1,last+1,-1):\n print(i)\n print(last+1)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l = map(int,input().split())\n",
"n,l = map(int,input().split())\na = [int(i) for i in input().split()]\n",
"n,l = map(int,input().split())\na = [int(i) for i in input().split()]\nfor i in :\n",
"n,l = map(int,input().split())\na = [int(i) for i in input().split()]\nfor i in :\n \nprint('Impossible')\n",
"n,l = map(int,input().split())\na = [int(i) for i in input().split()]\nfor i in range(n-1):\n \nprint('Impossible')\n",
"n,l = map(int,input().split())\na = [int(i) for i in input().split()]\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n print('Possible')\n for j in range(n-1,i+1,-1):\n print(j)\n for k in range(1,i+2):\n print(k)\n exit()\nprint('Impossible')\n"
] | 7
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"#print(n)\n",
"N, L = map(int, input().split())\n\n\n#print(n)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\n\n\n#print(n)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\n\n#print(n)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in :\n \n#print(n)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in :\n \n#print(n)\nif n < 0:\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in :\n \n#print(n)\nif n < 0:\n \nprint(\"Possible\")\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in :\n \n#print(n)\nif n < 0:\n \nprint(\"Possible\")\nfor i in :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in :\n \n#print(n)\nif n < 0:\n \nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in range(1, N):\n \n#print(n)\nif n < 0:\n \nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in range(1, N):\n if As[i-1]+As[i] >= L:\n n = i\n break\n#print(n)\nif n < 0:\n \nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in range(1, N):\n if As[i-1]+As[i] >= L:\n n = i\n break\n#print(n)\nif n < 0:\n \n \nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in range(1, N):\n if As[i-1]+As[i] >= L:\n n = i\n break\n#print(n)\nif n < 0:\n \n \nprint(\"Possible\")\nfor i in range(n-1):\n \nfor i in :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in range(1, N):\n if As[i-1]+As[i] >= L:\n n = i\n break\n#print(n)\nif n < 0:\n \n \nprint(\"Possible\")\nfor i in range(n-1):\n print(i+1)\nfor i in :\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in range(1, N):\n if As[i-1]+As[i] >= L:\n n = i\n break\n#print(n)\nif n < 0:\n \n \nprint(\"Possible\")\nfor i in range(n-1):\n print(i+1)\nfor i in reversed:\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in range(1, N):\n if As[i-1]+As[i] >= L:\n n = i\n break\n#print(n)\nif n < 0:\n \n \nprint(\"Possible\")\nfor i in range(n-1):\n print(i+1)\nfor i in reversed:\n print(i)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in range(1, N):\n if As[i-1]+As[i] >= L:\n n = i\n break\n#print(n)\nif n < 0:\n print(\"Impossible\")\n \nprint(\"Possible\")\nfor i in range(n-1):\n print(i+1)\nfor i in reversed:\n print(i)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in range(1, N):\n if As[i-1]+As[i] >= L:\n n = i\n break\n#print(n)\nif n < 0:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(n-1):\n print(i+1)\nfor i in reversed:\n print(i)\n",
"N, L = map(int, input().split())\nAs = list(map(int, input().split()))\nn = -1\nfor i in range(1, N):\n if As[i-1]+As[i] >= L:\n n = i\n break\n#print(n)\nif n < 0:\n print(\"Impossible\")\n exit()\nprint(\"Possible\")\nfor i in range(n-1):\n print(i+1)\nfor i in reversed(range(n, N)):\n print(i)\n"
] | 20
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map( int, input().split())\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in :\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in :\n \nif :\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n \nif :\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif :\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n print(ans)\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n print(ans)\nelse:\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n print(ans)\nelse:\n print(ans)\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n print(ans)\nelse:\n print(ans)\n for i in :\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n print(ans)\nelse:\n print(ans)\n for i in :\n \n for i in :\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n print(ans)\nelse:\n print(ans)\n for i in :\n \n for i in :\n \n print(t+1)\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n print(ans)\nelse:\n print(ans)\n for i in range(t):\n \n for i in :\n \n print(t+1)\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n print(ans)\nelse:\n print(ans)\n for i in range(t):\n print(i+1)\n for i in :\n \n print(t+1)\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n print(ans)\nelse:\n print(ans)\n for i in range(t):\n print(i+1)\n for i in range(N-2,t,-1):\n \n print(t+1)\n",
"N, L = map( int, input().split())\nA = list( map( int, input().split()))\nans = \"Impossible\"\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n ans = \"Possible\"\n t = i\n break\nif ans == \"Impossible\":\n print(ans)\nelse:\n print(ans)\n for i in range(t):\n print(i+1)\n for i in range(N-2,t,-1):\n print(i+1)\n print(t+1)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l = map(int,input().split())\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in :\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(1,n):\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(1,n):\n if a[i-1] + a[i] >= l:\n print(\"Possible\")\n for j in range(1,i,1):\n print(j)\n for j in range(n-1,i-1,-1):\n print(j)\n break\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(1,n):\n if a[i-1] + a[i] >= l:\n print(\"Possible\")\n for j in range(1,i,1):\n print(j)\n for j in range(n-1,i-1,-1):\n print(j)\n break\nelse:\n",
"n,l = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(1,n):\n if a[i-1] + a[i] >= l:\n print(\"Possible\")\n for j in range(1,i,1):\n print(j)\n for j in range(n-1,i-1,-1):\n print(j)\n break\nelse:\n print(\"Impossible\")\n"
] | 8
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"#possible\n",
"N,L = map(int,input().split())\n\n\n#possible\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\n\n#possible\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\n\n\n#possible\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in :\n \n\n#possible\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in :\n \n\n#possible\nif :\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n \n\n#possible\nif :\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\n\n\n#possible\nif :\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n \n\n#possible\nif :\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n \n\n#possible\nif imp==0:\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n \n \n#possible\nif imp==0:\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n \n \n#possible\nif imp==0:\n print(\"Possible\")\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n \n \n#possible\nif imp==0:\n print(\"Possible\")\n for j in :\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n \n \n#possible\nif imp==0:\n print(\"Possible\")\n for j in :\n \n for j in :\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n \n \n#possible\nif imp==0:\n print(\"Possible\")\n for j in :\n \n for j in :\n \n print(i+1)\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n print(\"Impossible\")\n \n\n#possible\nif imp==0:\n print(\"Possible\")\n for j in :\n \n for j in :\n \n print(i+1)\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n print(\"Impossible\")\n imp = 1\n\n#possible\nif imp==0:\n print(\"Possible\")\n for j in :\n \n for j in :\n \n print(i+1)\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n print(\"Impossible\")\n imp = 1\n\n#possible\nif imp==0:\n print(\"Possible\")\n for j in range(i):\n \n for j in :\n \n print(i+1)\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n print(\"Impossible\")\n imp = 1\n\n#possible\nif imp==0:\n print(\"Possible\")\n for j in range(i):\n print(j+1)\n for j in :\n \n print(i+1)\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n print(\"Impossible\")\n imp = 1\n\n#possible\nif imp==0:\n print(\"Possible\")\n for j in range(i):\n print(j+1)\n for j in range(N-1,i+1,-1):\n \n print(i+1)\n",
"N,L = map(int,input().split())\n\na = list(map(int,input().split()))\n\nimp = 0\nfor i in range(N-1):\n if a[i]+a[i+1]>=L:\n break\nelse:\n print(\"Impossible\")\n imp = 1\n\n#possible\nif imp==0:\n print(\"Possible\")\n for j in range(i):\n print(j+1)\n for j in range(N-1,i+1,-1):\n print(j)\n print(i+1)\n"
] | 22
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in :\n \nif :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n \nif :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif last==-1:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif last==-1:\n print(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif last==-1:\n print(\"Impossible\")\nelse:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,last):\n \n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,last):\n print(i)\n for i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,last):\n print(i)\n for i in range(len(a)-1,last-1,-1):\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nlast=-1\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n last=i+1\nif last==-1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,last):\n print(i)\n for i in range(len(a)-1,last-1,-1):\n print(i)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\nfor i in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\nfor i in :\n \n\nans = list(range(1, end)) + list(range(end, N))[::-1]\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\nfor i in :\n \n\nans = list(range(1, end)) + list(range(end, N))[::-1]\nprint('Possible')\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\nfor i in :\n \n\nans = list(range(1, end)) + list(range(end, N))[::-1]\nprint('Possible')\nprint(*ans, sep='\\n')\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\nfor i in range(N - 1):\n \n\nans = list(range(1, end)) + list(range(end, N))[::-1]\nprint('Possible')\nprint(*ans, sep='\\n')\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n end = i + 1\n break\n\n\nans = list(range(1, end)) + list(range(end, N))[::-1]\nprint('Possible')\nprint(*ans, sep='\\n')\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n end = i + 1\n break\nelse:\n \n\nans = list(range(1, end)) + list(range(end, N))[::-1]\nprint('Possible')\nprint(*ans, sep='\\n')\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n end = i + 1\n break\nelse:\n \n \nans = list(range(1, end)) + list(range(end, N))[::-1]\nprint('Possible')\nprint(*ans, sep='\\n')\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n end = i + 1\n break\nelse:\n print('Impossible')\n \n\nans = list(range(1, end)) + list(range(end, N))[::-1]\nprint('Possible')\nprint(*ans, sep='\\n')\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nend = 0\nfor i in range(N - 1):\n if a[i] + a[i + 1] >= L:\n end = i + 1\n break\nelse:\n print('Impossible')\n exit()\n\nans = list(range(1, end)) + list(range(end, N))[::-1]\nprint('Possible')\nprint(*ans, sep='\\n')\n"
] | 14
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l = map(int,input().split())\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in :\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in :\n \n\nif :\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n \n\nif :\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif :\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n \n \nelse:\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n print(\"Impossible\")\n \nelse:\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n print(\"Impossible\")\n exit()\nelse:\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n for i in :\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n \n print(target+1)\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n for i in range(target):\n \n for i in :\n \n print(target+1)\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n for i in range(target):\n print(i+1)\n for i in :\n \n print(target+1)\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n for i in range(target):\n print(i+1)\n for i in range(n-1, target+1, -1):\n \n print(target+1)\n",
"n,l = map(int,input().split())\nal = list(map(int,input().split()))\n\ntarget = -1\nfor i in range(n-1):\n if al[i] + al[i+1] >= l:\n target = i\n\nif target == -1:\n print(\"Impossible\")\n exit()\nelse:\n print(\"Possible\")\n for i in range(target):\n print(i+1)\n for i in range(n-1, target+1, -1):\n print(i)\n print(target+1)\n"
] | 20
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"x=-1\n",
"N,L=map(int,input().split())\n\nx=-1\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nx=-1\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nx=-1\nfor i in :\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nx=-1\nfor i in :\n \nif x==-1:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nx=-1\nfor i in range(N-1):\n \nif x==-1:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nx=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n x=i\n break\nif x==-1:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nx=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n x=i\n break\nif x==-1:\n print('Impossible')\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nx=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n x=i\n break\nif x==-1:\n print('Impossible')\nelse:\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nx=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n x=i\n break\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nx=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n x=i\n break\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n r=list(range(1,x+1))+list(range(N-1,x+1,-1))+[x+1,]\n",
"N,L=map(int,input().split())\nA=list(map(int,input().split()))\nx=-1\nfor i in range(N-1):\n if A[i]+A[i+1]>=L:\n x=i\n break\nif x==-1:\n print('Impossible')\nelse:\n print('Possible')\n r=list(range(1,x+1))+list(range(N-1,x+1,-1))+[x+1,]\n print(*r,sep='\\n')\n"
] | 13
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"# coding: utf-8\n",
"# coding: utf-8\nN, L = map(int, input().split())\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in :\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in :\n \nif l < 0:\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in :\n \nif l < 0:\n \nknot = list(range(1, N))\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in :\n \nif l < 0:\n \nknot = list(range(1, N))\nprint(\"Possible\")\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in :\n \nif l < 0:\n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in :\n \nif l < 0:\n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile :\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in :\n \nif l < 0:\n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile :\n \nidx = N-1\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in :\n \nif l < 0:\n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile :\n \nidx = N-1\nwhile :\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in :\n \nif l < 0:\n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile :\n \nidx = N-1\nwhile :\n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n \nif l < 0:\n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile :\n \nidx = N-1\nwhile :\n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile :\n \nidx = N-1\nwhile :\n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n \n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile :\n \nidx = N-1\nwhile :\n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n \n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile idx < l:\n \nidx = N-1\nwhile :\n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n \n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile idx < l:\n \n \nidx = N-1\nwhile :\n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n \n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile idx < l:\n \n \nidx = N-1\nwhile idx > l:\n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n \n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile idx < l:\n \n \nidx = N-1\nwhile idx > l:\n \n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n print(\"Impossible\")\n \nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile idx < l:\n \n \nidx = N-1\nwhile idx > l:\n \n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n print(\"Impossible\")\n exit()\nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile idx < l:\n \n \nidx = N-1\nwhile idx > l:\n \n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n print(\"Impossible\")\n exit()\nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile idx < l:\n print(idx)\n \nidx = N-1\nwhile idx > l:\n \n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n print(\"Impossible\")\n exit()\nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile idx < l:\n print(idx)\n idx += 1\nidx = N-1\nwhile idx > l:\n \n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n print(\"Impossible\")\n exit()\nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile idx < l:\n print(idx)\n idx += 1\nidx = N-1\nwhile idx > l:\n print(idx)\n \nprint(l)\n",
"# coding: utf-8\nN, L = map(int, input().split())\nA = list(map(int, input().split()))\nflag = True\nl = -1\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n l = i+1\nif l < 0:\n print(\"Impossible\")\n exit()\nknot = list(range(1, N))\nprint(\"Possible\")\nidx = 1\nwhile idx < l:\n print(idx)\n idx += 1\nidx = N-1\nwhile idx > l:\n print(idx)\n idx -= 1\nprint(l)\n"
] | 28
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nprint(\"Possible\")\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nprint(\"Possible\")\nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n \nprint(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n \nprint(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\n\n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n \nprint(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n \nprint(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1, X):\n \nfor i in :\n \nprint(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in :\n \nprint(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in range(N-1, X, -1):\n \nprint(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n\nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in range(N-1, X, -1):\n print(i)\nprint(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n \n \nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in range(N-1, X, -1):\n print(i)\nprint(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n print(\"Impossible\")\n \n\nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in range(N-1, X, -1):\n print(i)\nprint(X)\n",
"N, L = map(int, input().split())\nA = list(map(int, input().split()))\n\nfor i in range(1, N):\n if A[i-1] + A[i] >= L:\n X = i\n break\nelse:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\nfor i in range(1, X):\n print(i)\nfor i in range(N-1, X, -1):\n print(i)\nprint(X)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L=map(int,input().split())\n",
"N,L=map(int,input().split())\n\na=list(map(int,input().split()))\n",
"N,L=map(int,input().split())\n\na=list(map(int,input().split()))\n\n\nfor i in :\n",
"N,L=map(int,input().split())\n\na=list(map(int,input().split()))\n\n\nfor i in :\n \nprint(\"Impossible\")\n",
"N,L=map(int,input().split())\n\na=list(map(int,input().split()))\n\n\nfor i in range(1,len(a)):\n \nprint(\"Impossible\")\n",
"N,L=map(int,input().split())\n\na=list(map(int,input().split()))\n\n\nfor i in range(1,len(a)):\n if a[i]+a[i-1]<L:\n pass\n else:\n print(\"Possible\")\n for j in range(1,i):\n print(j)\n for k in range(len(a)-i-1):\n print(len(a)-1-k)\n print(i)\n exit()\nprint(\"Impossible\")\n"
] | 7
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"tmp=0\n",
"n,k=map(int,input().split())\n\ntmp=0\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in :\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in :\n \nif :\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n \nif :\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif :\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n print(\"Impossible\")\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n print(\"Impossible\")\nelse:\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n \n print(tmp)\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,tmp):\n \n for i in :\n \n print(tmp)\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,tmp):\n print(i)\n for i in :\n \n print(tmp)\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,tmp):\n print(i)\n for i in range(n-1,tmp,-1):\n \n print(tmp)\n",
"n,k=map(int,input().split())\nl=list(map(int,input().split()))\ntmp=0\nfor i in range(1,n):\n if l[i-1]+l[i]>=k:\n tmp=i\n break\nif tmp==0:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(1,tmp):\n print(i)\n for i in range(n-1,tmp,-1):\n print(i)\n print(tmp)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l = map(int, input().split())\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in :\n \nif :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n \nif :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n \n \nif :\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n \n \nif MAX >= l:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n \n \nif MAX >= l:\n \n \nelse:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n \nif MAX >= l:\n \n \nelse:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if :\n \nif MAX >= l:\n \n \nelse:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if :\n \nif MAX >= l:\n print(\"Possible\")\n \n \nelse:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if :\n \nif MAX >= l:\n print(\"Possible\")\n for i in :\n \n \nelse:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if :\n \nif MAX >= l:\n print(\"Possible\")\n for i in :\n \n for i in :\n \nelse:\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if :\n \nif MAX >= l:\n print(\"Possible\")\n for i in :\n \n for i in :\n \nelse:\n print(\"Impossible\")\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if now > MAX:\n \nif MAX >= l:\n print(\"Possible\")\n for i in :\n \n for i in :\n \nelse:\n print(\"Impossible\")\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if now > MAX:\n \n \nif MAX >= l:\n print(\"Possible\")\n for i in :\n \n for i in :\n \nelse:\n print(\"Impossible\")\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if now > MAX:\n \n \nif MAX >= l:\n print(\"Possible\")\n for i in range(MAX_i):\n \n for i in :\n \nelse:\n print(\"Impossible\")\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if now > MAX:\n \n \nif MAX >= l:\n print(\"Possible\")\n for i in range(MAX_i):\n print(i+1)\n for i in :\n \nelse:\n print(\"Impossible\")\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if now > MAX:\n \n \nif MAX >= l:\n print(\"Possible\")\n for i in range(MAX_i):\n print(i+1)\n for i in range(n-MAX_i-1):\n \nelse:\n print(\"Impossible\")\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if now > MAX:\n \n \nif MAX >= l:\n print(\"Possible\")\n for i in range(MAX_i):\n print(i+1)\n for i in range(n-MAX_i-1):\n print(n-i-1)\nelse:\n print(\"Impossible\")\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if now > MAX:\n MAX = now\n \nif MAX >= l:\n print(\"Possible\")\n for i in range(MAX_i):\n print(i+1)\n for i in range(n-MAX_i-1):\n print(n-i-1)\nelse:\n print(\"Impossible\")\n",
"n,l = map(int, input().split())\na = list(map(int, input().split()))\nMAX = 0\nMAX_i = 0\nfor i in range(n-1):\n now = a[i] + a[i+1]\n if now > MAX:\n MAX = now\n MAX_i = i\nif MAX >= l:\n print(\"Possible\")\n for i in range(MAX_i):\n print(i+1)\n for i in range(n-MAX_i-1):\n print(n-i-1)\nelse:\n print(\"Impossible\")\n"
] | 25
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n, l = map(int, input().split())\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in :\n \nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in :\n \nif :\n \n\nprint(\"Possible\")\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in :\n \nif :\n \n\nprint(\"Possible\")\nfor i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in :\n \nif :\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in :\n \nif :\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n \nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n \nif :\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n \nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n if l <= a[i] + a[i + 1]:\n flag = i + 1\nif :\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n \nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n if l <= a[i] + a[i + 1]:\n flag = i + 1\nif flag == -1:\n \n\nprint(\"Possible\")\nfor i in :\n \nfor i in :\n \nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n if l <= a[i] + a[i + 1]:\n flag = i + 1\nif flag == -1:\n \n \nprint(\"Possible\")\nfor i in :\n \nfor i in :\n \nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n if l <= a[i] + a[i + 1]:\n flag = i + 1\nif flag == -1:\n \n \nprint(\"Possible\")\nfor i in range(1, flag):\n \nfor i in :\n \nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n if l <= a[i] + a[i + 1]:\n flag = i + 1\nif flag == -1:\n \n \nprint(\"Possible\")\nfor i in range(1, flag):\n print(i)\nfor i in :\n \nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n if l <= a[i] + a[i + 1]:\n flag = i + 1\nif flag == -1:\n \n \nprint(\"Possible\")\nfor i in range(1, flag):\n print(i)\nfor i in [::-1]:\n \nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n if l <= a[i] + a[i + 1]:\n flag = i + 1\nif flag == -1:\n \n \nprint(\"Possible\")\nfor i in range(1, flag):\n print(i)\nfor i in [::-1]:\n print(i)\nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n if l <= a[i] + a[i + 1]:\n flag = i + 1\nif flag == -1:\n print(\"Impossible\")\n \n\nprint(\"Possible\")\nfor i in range(1, flag):\n print(i)\nfor i in [::-1]:\n print(i)\nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n if l <= a[i] + a[i + 1]:\n flag = i + 1\nif flag == -1:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\nfor i in range(1, flag):\n print(i)\nfor i in [::-1]:\n print(i)\nprint(flag)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\nflag = -1\nfor i in range(n - 1):\n if l <= a[i] + a[i + 1]:\n flag = i + 1\nif flag == -1:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\nfor i in range(1, flag):\n print(i)\nfor i in range(flag + 1, n)[::-1]:\n print(i)\nprint(flag)\n"
] | 21
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int,input().split())\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n \n\nidx = equal_or_over_idx()\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n \n\nidx = equal_or_over_idx()\nif :\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n \n \nidx = equal_or_over_idx()\nif :\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n \n \nidx = equal_or_over_idx()\nif idx == -1:\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n \n \nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n \n \nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in :\n \n \nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in :\n \n return -1\n\nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in range(N-1):\n \n return -1\n\nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in range(N-1):\n if a_list[i]+a_list[i+1] >=L:\n return i\n return -1\n\nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in range(N-1):\n if a_list[i]+a_list[i+1] >=L:\n return i\n return -1\n\nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in range(N-1):\n if a_list[i]+a_list[i+1] >=L:\n return i\n return -1\n\nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in range(N-1):\n if a_list[i]+a_list[i+1] >=L:\n return i\n return -1\n\nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in range(N-1):\n if a_list[i]+a_list[i+1] >=L:\n return i\n return -1\n\nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(idx):\n \n for i in :\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in range(N-1):\n if a_list[i]+a_list[i+1] >=L:\n return i\n return -1\n\nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(idx):\n print(i+1)\n for i in :\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in range(N-1):\n if a_list[i]+a_list[i+1] >=L:\n return i\n return -1\n\nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(idx):\n print(i+1)\n for i in range(N-1,idx,-1):\n",
"N, L = map(int,input().split())\na_list = list(map(int,input().split()))\n\ndef equal_or_over_idx():\n for i in range(N-1):\n if a_list[i]+a_list[i+1] >=L:\n return i\n return -1\n\nidx = equal_or_over_idx()\nif idx == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(idx):\n print(i+1)\n for i in range(N-1,idx,-1):\n print(i)\n"
] | 21
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\na=[int(j)for j in input().split()]\n",
"n,l=map(int,input().split())\na=[int(j)for j in input().split()]\nfor i in :\n",
"n,l=map(int,input().split())\na=[int(j)for j in input().split()]\nfor i in :\n \nprint(\"Impossible\")\n",
"n,l=map(int,input().split())\na=[int(j)for j in input().split()]\nfor i in range(1,n):\n \nprint(\"Impossible\")\n",
"n,l=map(int,input().split())\na=[int(j)for j in input().split()]\nfor i in range(1,n):\n if a[i-1]+a[i]>=l:\n print(\"Possible\")\n for j in range(i+1,n)[::-1]:\n print(j)\n for j in range(1,i+1):\n print(j)\n exit()\nprint(\"Impossible\")\n"
] | 7
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N,L = map(int,input().split())\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in :\n \nif :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n \nif :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif last == 0:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif last == 0:\n print('Impossible')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif last == 0:\n print('Impossible')\nelse:\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif last == 0:\n print('Impossible')\nelse:\n print('Possible')\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif last == 0:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif last == 0:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif last == 0:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,last):\n \n for i in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif last == 0:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,last):\n print(i)\n for i in :\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif last == 0:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,last):\n print(i)\n for i in range(N-1,last-1,-1):\n",
"N,L = map(int,input().split())\nA = list(map(int,input().split()))\n\nlast = 0\nfor i in range(N-1):\n if A[i] + A[i+1] >= L:\n last = i+1\n break\nif last == 0:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(1,last):\n print(i)\n for i in range(N-1,last-1,-1):\n print(i)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\n*a,=map(int,input().split())\n",
"n,l=map(int,input().split())\n*a,=map(int,input().split())\n\nfor i in :\n",
"n,l=map(int,input().split())\n*a,=map(int,input().split())\n\nfor i in range(n-1):\n",
"n,l=map(int,input().split())\n*a,=map(int,input().split())\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n print(\"Possible\")\n print(*range(i+2,n)[::-1],sep=\"\\n\")\n print(*range(1,i+2),sep=\"\\n\")\n break\n",
"n,l=map(int,input().split())\n*a,=map(int,input().split())\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n print(\"Possible\")\n print(*range(i+2,n)[::-1],sep=\"\\n\")\n print(*range(1,i+2),sep=\"\\n\")\n break\nelse:\n",
"n,l=map(int,input().split())\n*a,=map(int,input().split())\n\nfor i in range(n-1):\n if a[i]+a[i+1]>=l:\n print(\"Possible\")\n print(*range(i+2,n)[::-1],sep=\"\\n\")\n print(*range(1,i+2),sep=\"\\n\")\n break\nelse:\n print(\"Impossible\")\n"
] | 8
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"K=K+1\n",
"K=10**10\n\n\nK=K+1\n",
"K=10**10\nimport sys\n\n\nK=K+1\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\n\n\nK=K+1\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\n\n\nK=K+1\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in :\n \n\nK=K+1\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in :\n \nif :\n \nK=K+1\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in :\n \nif :\n \nK=K+1\nR=list(range(1,K))\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in :\n \nif :\n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in :\n \nif :\n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in :\n \nif :\n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in :\n \nif :\n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\nR.append(K)\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in :\n \nif :\n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\nR.append(K)\nfor i in :\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in range(N-1):\n \nif :\n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\nR.append(K)\nfor i in :\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in range(N-1):\n if T[i]+T[i+1]>=L:\n K=i\n print(\"Possible\")\n break\nif :\n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\nR.append(K)\nfor i in :\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in range(N-1):\n if T[i]+T[i+1]>=L:\n K=i\n print(\"Possible\")\n break\nif K==10**10:\n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\nR.append(K)\nfor i in :\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in range(N-1):\n if T[i]+T[i+1]>=L:\n K=i\n print(\"Possible\")\n break\nif K==10**10:\n \n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\nR.append(K)\nfor i in :\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in range(N-1):\n if T[i]+T[i+1]>=L:\n K=i\n print(\"Possible\")\n break\nif K==10**10:\n \n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\nR.append(K)\nfor i in range(N-1):\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in range(N-1):\n if T[i]+T[i+1]>=L:\n K=i\n print(\"Possible\")\n break\nif K==10**10:\n \n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\nR.append(K)\nfor i in range(N-1):\n print(R[i])\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in range(N-1):\n if T[i]+T[i+1]>=L:\n K=i\n print(\"Possible\")\n break\nif K==10**10:\n print(\"Impossible\")\n \nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\nR.append(K)\nfor i in range(N-1):\n print(R[i])\n",
"K=10**10\nimport sys\nN,L=map(int,input().split())\nT=list(map(int,input().split()))\nfor i in range(N-1):\n if T[i]+T[i+1]>=L:\n K=i\n print(\"Possible\")\n break\nif K==10**10:\n print(\"Impossible\")\n sys.exit()\nK=K+1\nR=list(range(1,K))\nM=list(range(K+1,N))\nM.reverse()\nR.extend(M)\nR.append(K)\nfor i in range(N-1):\n print(R[i])\n"
] | 22
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l = map(int,input().split())\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in :\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in :\n \nif flag:\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n \nif flag:\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n \n \nelse:\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n print('Possible')\n \n \nelse:\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n print('Possible')\n for i in :\n \n \nelse:\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n print('Possible')\n for i in :\n \n for i in :\n \n \nelse:\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n print('Possible')\n for i in :\n \n for i in :\n \n print(cur)\nelse:\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n print('Possible')\n for i in :\n \n for i in :\n \n print(cur)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n print('Possible')\n for i in range(1,cur):\n \n for i in :\n \n print(cur)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n print('Possible')\n for i in range(1,cur):\n print(i)\n for i in :\n \n print(cur)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n print('Possible')\n for i in range(1,cur):\n print(i)\n for i in range(n-1,cur,-1):\n \n print(cur)\nelse:\n print('Impossible')\n",
"n,l = map(int,input().split())\nL = list(map(int,input().split()))\nflag = False\ncur = 0\nfor i in range(n-1):\n if L[i]+L[i+1] >= l:\n flag = True\n cur = i+1\n break\nif flag:\n print('Possible')\n for i in range(1,cur):\n print(i)\n for i in range(n-1,cur,-1):\n print(i)\n print(cur)\nelse:\n print('Impossible')\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,l=map(int,input().split())\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in :\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in :\n \n\nfor i in :\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in :\n \n\nfor i in :\n \nfor i in :\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in :\n \n\nfor i in :\n \nfor i in :\n \nprint(t)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(n-1):\n \n\nfor i in :\n \nfor i in :\n \nprint(t)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1]>=l:\n print('Possible')\n t=i+1\n break\n\nfor i in :\n \nfor i in :\n \nprint(t)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1]>=l:\n print('Possible')\n t=i+1\n break\nelse:\n \nfor i in :\n \nfor i in :\n \nprint(t)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1]>=l:\n print('Possible')\n t=i+1\n break\nelse:\n \nfor i in range(1,t):\n \nfor i in :\n \nprint(t)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1]>=l:\n print('Possible')\n t=i+1\n break\nelse:\n \nfor i in range(1,t):\n print(i)\nfor i in :\n \nprint(t)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1]>=l:\n print('Possible')\n t=i+1\n break\nelse:\n \nfor i in range(1,t):\n print(i)\nfor i in range(n-1,t,-1):\n \nprint(t)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1]>=l:\n print('Possible')\n t=i+1\n break\nelse:\n \nfor i in range(1,t):\n print(i)\nfor i in range(n-1,t,-1):\n print(i)\nprint(t)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1]>=l:\n print('Possible')\n t=i+1\n break\nelse:\n \n \nfor i in range(1,t):\n print(i)\nfor i in range(n-1,t,-1):\n print(i)\nprint(t)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1]>=l:\n print('Possible')\n t=i+1\n break\nelse:\n print('Impossible')\n \nfor i in range(1,t):\n print(i)\nfor i in range(n-1,t,-1):\n print(i)\nprint(t)\n",
"n,l=map(int,input().split())\nA=list(map(int,input().split()))\nfor i in range(n-1):\n if A[i]+A[i+1]>=l:\n print('Possible')\n t=i+1\n break\nelse:\n print('Impossible')\n exit()\nfor i in range(1,t):\n print(i)\nfor i in range(n-1,t,-1):\n print(i)\nprint(t)\n"
] | 17
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n, l = map(int, input().split())\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in :\n \n\nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n \n\nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif ind == -1:\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif ind == -1:\n print(\"Impossible\")\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif ind == -1:\n print(\"Impossible\")\nelse:\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif ind == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif ind == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif ind == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in :\n \n for i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif ind == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(ind):\n \n for i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif ind == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(ind):\n print(i+1)\n for i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif ind == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(ind):\n print(i+1)\n for i in range(n-1, ind, -1):\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\nind = -1\nfor i in range(n-1):\n if a[i]+a[i+1] >= l:\n ind = i\n break\n\nif ind == -1:\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for i in range(ind):\n print(i+1)\n for i in range(n-1, ind, -1):\n print(i)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"m=0\nx=0\n",
"n,l=map(int,input().split())\n\nm=0\nx=0\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in :\n \nif(m<l):\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n \nif(m<l):\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n print(\"Impossible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n print(\"Impossible\")\nelse:\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in :\n \n for k in :\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in :\n \n for k in :\n \n print(x+1)\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in range(x):\n \n for k in :\n \n print(x+1)\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in range(x):\n print(j+1)\n for k in :\n \n print(x+1)\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in range(x):\n print(j+1)\n for k in range(n-1,x+1,-1):\n \n print(x+1)\n",
"n,l=map(int,input().split())\na=list(map(int,input().split()))\nm=0\nx=0\nfor i in range(n-1):\n if((a[i]+a[i+1])>=m):\n m=a[i]+a[i+1]\n x=i\nif(m<l):\n print(\"Impossible\")\nelse:\n print(\"Possible\")\n for j in range(x):\n print(j+1)\n for k in range(n-1,x+1,-1):\n print(k)\n print(x+1)\n"
] | 18
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n, l = map(int,input().split())\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in :\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in :\n \n\nif :\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in :\n \n\nif :\n \n\nprint(\"Possible\")\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in :\n \n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in :\n \n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in range(n-1):\n \n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in range(n-1):\n if a[i] + a[i + 1] >= l:\n loc = i + 1\n break\n\nif :\n \n\nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in range(n-1):\n if a[i] + a[i + 1] >= l:\n loc = i + 1\n break\n\nif loc < 0:\n \n\nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in range(n-1):\n if a[i] + a[i + 1] >= l:\n loc = i + 1\n break\n\nif loc < 0:\n \n \nprint(\"Possible\")\n\nfor i in :\n \nfor i in :\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in range(n-1):\n if a[i] + a[i + 1] >= l:\n loc = i + 1\n break\n\nif loc < 0:\n \n \nprint(\"Possible\")\n\nfor i in range(1, loc):\n \nfor i in :\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in range(n-1):\n if a[i] + a[i + 1] >= l:\n loc = i + 1\n break\n\nif loc < 0:\n \n \nprint(\"Possible\")\n\nfor i in range(1, loc):\n print(i)\nfor i in :\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in range(n-1):\n if a[i] + a[i + 1] >= l:\n loc = i + 1\n break\n\nif loc < 0:\n \n \nprint(\"Possible\")\n\nfor i in range(1, loc):\n print(i)\nfor i in range(n - 1, loc - 1, -1):\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in range(n-1):\n if a[i] + a[i + 1] >= l:\n loc = i + 1\n break\n\nif loc < 0:\n \n \nprint(\"Possible\")\n\nfor i in range(1, loc):\n print(i)\nfor i in range(n - 1, loc - 1, -1):\n print(i)\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in range(n-1):\n if a[i] + a[i + 1] >= l:\n loc = i + 1\n break\n\nif loc < 0:\n print(\"Impossible\")\n \n\nprint(\"Possible\")\n\nfor i in range(1, loc):\n print(i)\nfor i in range(n - 1, loc - 1, -1):\n print(i)\n",
"n, l = map(int,input().split())\na = list(map(int,input().split()))\n\nloc = -1\nfor i in range(n-1):\n if a[i] + a[i + 1] >= l:\n loc = i + 1\n break\n\nif loc < 0:\n print(\"Impossible\")\n exit()\n\nprint(\"Possible\")\n\nfor i in range(1, loc):\n print(i)\nfor i in range(n - 1, loc - 1, -1):\n print(i)\n"
] | 19
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"N, L = map(int, input().split())\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nmax_value = max_value_index = 0\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nmax_value = max_value_index = 0\nfor in :\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nmax_value = max_value_index = 0\nfor in :\n \n\nprint(\"Possible\\n\" + \"\\n\".join([str(i) for i in range(1, max_value_index + 1)] + [str(i) for i in range(N - 1, max_value_index, -1)]) if max_value >= L else \"Impossible\")\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nmax_value = max_value_index = 0\nfor index, i in :\n \n\nprint(\"Possible\\n\" + \"\\n\".join([str(i) for i in range(1, max_value_index + 1)] + [str(i) for i in range(N - 1, max_value_index, -1)]) if max_value >= L else \"Impossible\")\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nmax_value = max_value_index = 0\nfor index, i in enumerate:\n \n\nprint(\"Possible\\n\" + \"\\n\".join([str(i) for i in range(1, max_value_index + 1)] + [str(i) for i in range(N - 1, max_value_index, -1)]) if max_value >= L else \"Impossible\")\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nmax_value = max_value_index = 0\nfor index, i in enumerate:\n if max_value < sum(i):\n max_value = sum(i)\n max_value_index = index\n\nprint(\"Possible\\n\" + \"\\n\".join([str(i) for i in range(1, max_value_index + 1)] + [str(i) for i in range(N - 1, max_value_index, -1)]) if max_value >= L else \"Impossible\")\n",
"N, L = map(int, input().split())\na = list(map(int, input().split()))\nmax_value = max_value_index = 0\nfor index, i in enumerate(zip(a[:-1], a[1:])):\n if max_value < sum(i):\n max_value = sum(i)\n max_value_index = index\n\nprint(\"Possible\\n\" + \"\\n\".join([str(i) for i in range(1, max_value_index + 1)] + [str(i) for i in range(N - 1, max_value_index, -1)]) if max_value >= L else \"Impossible\")\n"
] | 10
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n,k = map(int,input().split())\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in :\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in :\n \n\nif :\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n \n\nif :\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\n\nif :\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\nelse:\n \nif :\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\nelse:\n \nif x == 0:\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\nelse:\n \nif x == 0:\n print(*list(range(1,n))[::-1],sep=\"\\n\")\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\nelse:\n \nif x == 0:\n print(*list(range(1,n))[::-1],sep=\"\\n\")\nelse:\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\nelse:\n \n \nif x == 0:\n print(*list(range(1,n))[::-1],sep=\"\\n\")\nelse:\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\nelse:\n print(\"Impossible\")\n \nif x == 0:\n print(*list(range(1,n))[::-1],sep=\"\\n\")\nelse:\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\nelse:\n print(\"Impossible\")\n exit()\nif x == 0:\n print(*list(range(1,n))[::-1],sep=\"\\n\")\nelse:\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\nelse:\n print(\"Impossible\")\n exit()\nif x == 0:\n print(*list(range(1,n))[::-1],sep=\"\\n\")\nelse:\n ans = list(range(1,n))\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\nelse:\n print(\"Impossible\")\n exit()\nif x == 0:\n print(*list(range(1,n))[::-1],sep=\"\\n\")\nelse:\n ans = list(range(1,n))\n ans[x:] = ans[n-1:x-1:-1]\n",
"n,k = map(int,input().split())\na = list(map(int,input().split()))\nfor i in range(n-1):\n if a[i]+a[i+1] >= k:\n print(\"Possible\")\n x = i\n break\nelse:\n print(\"Impossible\")\n exit()\nif x == 0:\n print(*list(range(1,n))[::-1],sep=\"\\n\")\nelse:\n ans = list(range(1,n))\n ans[x:] = ans[n-1:x-1:-1]\n print(*ans,sep=\"\\n\")\n"
] | 17
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
0/::0
|
We have N pieces of ropes, numbered 1 through N. The length of piece i is a_i.
At first, for each i (1≤i≤N-1), piece i and piece i+1 are tied at the ends, forming one long rope with N-1 knots. Snuke will try to untie all of the knots by performing the following operation repeatedly:
* Choose a (connected) rope with a total length of at least L, then untie one of its knots.
Is it possible to untie all of the N-1 knots by properly applying this operation? If the answer is positive, find one possible order to untie the knots.
Constraints
* 2≤N≤10^5
* 1≤L≤10^9
* 1≤a_i≤10^9
* All input values are integers.
Input
The input is given from Standard Input in the following format:
N L
a_1 a_2 ... a_n
Output
If it is not possible to untie all of the N-1 knots, print `Impossible`.
If it is possible to untie all of the knots, print `Possible`, then print another N-1 lines that describe a possible order to untie the knots. The j-th of those N-1 lines should contain the index of the knot that is untied in the j-th operation. Here, the index of the knot connecting piece i and piece i+1 is i.
If there is more than one solution, output any.
Examples
Input
3 50
30 20 10
Output
Possible
2
1
Input
2 21
10 10
Output
Impossible
Input
5 50
10 20 30 40 50
Output
Possible
1
2
3
4
|
[
"\n",
"n, l = map(int, input().split())\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in :\n \n\nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n \n\nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n print('Impossible')\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n print('Impossible')\nelse:\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n print('Impossible')\nelse:\n print('Possible')\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n print('Impossible')\nelse:\n print('Possible')\n for i in :\n \n for i in :\n \n print(index_min+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(index_min):\n \n for i in :\n \n print(index_min+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(index_min):\n print(i+1)\n for i in :\n \n print(index_min+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(index_min):\n print(i+1)\n for i in range(n-2, index_min, -1):\n \n print(index_min+1)\n",
"n, l = map(int, input().split())\na = list(map(int, input().split()))\n\ncheck_min = 0\nindex_min = n\n\nfor i in range(n-1):\n if check_min < a[i] + a[i+1]:\n check_min = a[i] + a[i+1]\n index_min = i\n\nif check_min < l:\n print('Impossible')\nelse:\n print('Possible')\n for i in range(index_min):\n print(i+1)\n for i in range(n-2, index_min, -1):\n print(i+1)\n print(index_min+1)\n"
] | 20
|
[
{
"input": "3 50\n30 20 10",
"output": "Possible\n2\n1"
},
{
"input": "5 50\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4"
},
{
"input": "2 21\n10 10",
"output": "Impossible"
}
] |
[
{
"input": "3 50\n30 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 40 50",
"output": "Possible\n1\n2\n3\n4\n"
},
{
"input": "5 50\n10 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "5 30\n10 20 29 51 104",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "3 23\n0 17 18",
"output": "Possible\n1\n2\n"
},
{
"input": "2 21\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 50\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 17 11",
"output": "Possible\n2\n1\n"
},
{
"input": "3 50\n30 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 50",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n26 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n50 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 4\n10 13",
"output": "Possible\n1\n"
},
{
"input": "3 67\n34 17 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 39\n15 20",
"output": "Impossible\n"
},
{
"input": "3 68\n50 17 10",
"output": "Impossible\n"
},
{
"input": "2 4\n10 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 25\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 20",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 17 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 4",
"output": "Possible\n1\n"
},
{
"input": "3 67\n61 17 4",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 29 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 1\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 6",
"output": "Possible\n1\n"
},
{
"input": "3 16\n19 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n15 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n8 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 7\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 7\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 0",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 19 10",
"output": "Impossible\n"
},
{
"input": "5 50\n10 20 30 40 27",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 28\n10 10",
"output": "Impossible\n"
},
{
"input": "3 50\n30 33 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 20 30 58 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 25\n10 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n55 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 21\n10 24",
"output": "Possible\n1\n"
},
{
"input": "3 44\n34 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 47\n34 6 10",
"output": "Impossible\n"
},
{
"input": "3 82\n34 17 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 44\n10 20 30 40 35",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 50\n23 17 10",
"output": "Impossible\n"
},
{
"input": "5 50\n8 20 30 51 88",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 21\n12 20",
"output": "Possible\n1\n"
},
{
"input": "3 67\n9 17 10",
"output": "Impossible\n"
},
{
"input": "3 12\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "5 80\n10 20 30 6 50",
"output": "Impossible\n"
},
{
"input": "3 13\n38 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n10 13 30 51 104",
"output": "Possible\n1\n2\n4\n3\n"
},
{
"input": "2 39\n15 7",
"output": "Impossible\n"
},
{
"input": "2 4\n10 7",
"output": "Possible\n1\n"
},
{
"input": "3 67\n57 17 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 23\n30 21 13",
"output": "Possible\n2\n1\n"
},
{
"input": "3 13\n26 0 10",
"output": "Possible\n2\n1\n"
},
{
"input": "2 11\n15 36",
"output": "Possible\n1\n"
},
{
"input": "3 68\n50 2 1",
"output": "Impossible\n"
},
{
"input": "2 4\n9 8",
"output": "Possible\n1\n"
},
{
"input": "3 13\n19 2 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 36 29 51 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "3 16\n37 3 10",
"output": "Possible\n2\n1\n"
},
{
"input": "5 50\n2 20 54 34 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 0\n20 20",
"output": "Possible\n1\n"
},
{
"input": "2 4\n9 9",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 9 54 51 144",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 3\n10 1",
"output": "Possible\n1\n"
},
{
"input": "5 50\n2 14 54 1 104",
"output": "Possible\n1\n4\n3\n2\n"
},
{
"input": "2 2\n10 1",
"output": "Possible\n1\n"
},
{
"input": "2 13\n14 1",
"output": "Possible\n1\n"
},
{
"input": "2 14\n14 0",
"output": "Possible\n1\n"
},
{
"input": "2 7\n18 1",
"output": "Possible\n1\n"
},
{
"input": "3 50\n30 5 10",
"output": "Impossible\n"
},
{
"input": "3 67\n30 33 10",
"output": "Impossible\n"
},
{
"input": "5 5\n10 20 30 58 88",
"output": "Possible\n4\n3\n2\n1\n"
},
{
"input": "2 25\n14 20",
"output": "Possible\n1\n"
},
{
"input": "3 50\n49 23 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 44\n34 17 5",
"output": "Possible\n2\n1\n"
},
{
"input": "3 4\n34 6 10",
"output": "Possible\n2\n1\n"
},
{
"input": "3 82\n34 12 11",
"output": "Impossible\n"
},
{
"input": "3 50\n54 21 20",
"output": "Possible\n2\n1\n"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.