id
stringclasses
1 value
instruction
stringclasses
206 values
trajectory
listlengths
2
137
length
int64
2
137
public_tests
listlengths
1
6
generated_tests
listlengths
4
100
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A1 = []\nA2 = []\n", "N = int(input())\nA1 = []\nA2 = []\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n \n i += 1\n \n return i\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n \n return i\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left:mid] + [('SNT', snt)]\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left:mid] + [('SNT', snt)]\n R = A[mid:right] + [('SNT', snt)]\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left:mid] + [('SNT', snt)]\n R = A[mid:right] + [('SNT', snt)]\n i, j = 0, 0\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left:mid] + [('SNT', snt)]\n R = A[mid:right] + [('SNT', snt)]\n i, j = 0, 0\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left:mid] + [('SNT', snt)]\n R = A[mid:right] + [('SNT', snt)]\n i, j = 0, 0\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left:mid] + [('SNT', snt)]\n R = A[mid:right] + [('SNT', snt)]\n i, j = 0, 0\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nquick_sort(A1, 0, N - 1)\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left:mid] + [('SNT', snt)]\n R = A[mid:right] + [('SNT', snt)]\n i, j = 0, 0\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nquick_sort(A1, 0, N - 1)\nmerge_sort(A2, 0, N)\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left:mid] + [('SNT', snt)]\n R = A[mid:right] + [('SNT', snt)]\n i, j = 0, 0\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nquick_sort(A1, 0, N - 1)\nmerge_sort(A2, 0, N)\n\nprint('Stable' if A1 == A2 else 'Not stable')\n", "N = int(input())\nA1 = []\nA2 = []\nfor _ in range(N):\n a = input().split()\n A1.append((a[0], int(a[1])))\n A2.append((a[0], int(a[1])))\n\nsnt = 10 ** 9 + 1\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left:mid] + [('SNT', snt)]\n R = A[mid:right] + [('SNT', snt)]\n i, j = 0, 0\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nquick_sort(A1, 0, N - 1)\nmerge_sort(A2, 0, N)\n\nprint('Stable' if A1 == A2 else 'Not stable')\nfor a1 in A1: print(*a1)\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "a = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n \n \na = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n \n \na = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n \n \na = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n \n \na = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n \n \na = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n \n\na = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\na = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\na = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\ndef print_a(a):\n for x in a:\n print(x[\"design\"], x[\"value\"])\n\n\na = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\ndef print_a(a):\n for x in a:\n print(x[\"design\"], x[\"value\"])\n\n\nn = int(input())\na = []\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\ndef print_a(a):\n for x in a:\n print(x[\"design\"], x[\"value\"])\n\n\nn = int(input())\na = []\nfor _ in range(n):\n s = input().split()\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\ndef print_a(a):\n for x in a:\n print(x[\"design\"], x[\"value\"])\n\n\nn = int(input())\na = []\nfor _ in range(n):\n s = input().split()\n a.append({\"design\": s[0], \"value\": int(s[1])})\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\ndef print_a(a):\n for x in a:\n print(x[\"design\"], x[\"value\"])\n\n\nn = int(input())\na = []\nfor _ in range(n):\n s = input().split()\n a.append({\"design\": s[0], \"value\": int(s[1])})\nb = a.copy()\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\ndef print_a(a):\n for x in a:\n print(x[\"design\"], x[\"value\"])\n\n\nn = int(input())\na = []\nfor _ in range(n):\n s = input().split()\n a.append({\"design\": s[0], \"value\": int(s[1])})\nb = a.copy()\n\nquick_sort(a, 0, n - 1)\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\ndef print_a(a):\n for x in a:\n print(x[\"design\"], x[\"value\"])\n\n\nn = int(input())\na = []\nfor _ in range(n):\n s = input().split()\n a.append({\"design\": s[0], \"value\": int(s[1])})\nb = a.copy()\n\nquick_sort(a, 0, n - 1)\n\nfor i in range(n - 1):\n if a[i][\"value\"] == a[i+1][\"value\"]:\n if b.index(a[i]) > b.index(a[i + 1]):\n print(\"Not stable\")\n break\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\ndef print_a(a):\n for x in a:\n print(x[\"design\"], x[\"value\"])\n\n\nn = int(input())\na = []\nfor _ in range(n):\n s = input().split()\n a.append({\"design\": s[0], \"value\": int(s[1])})\nb = a.copy()\n\nquick_sort(a, 0, n - 1)\n\nfor i in range(n - 1):\n if a[i][\"value\"] == a[i+1][\"value\"]:\n if b.index(a[i]) > b.index(a[i + 1]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n", "def partition(a, p, r):\n x = a[r][\"value\"]\n i = p - 1\n for j in range(p, r):\n if a[j][\"value\"] <= x:\n i += 1\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n tmp = a[i+1]\n a[i+1] = a[r]\n a[r] = tmp\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\ndef print_a(a):\n for x in a:\n print(x[\"design\"], x[\"value\"])\n\n\nn = int(input())\na = []\nfor _ in range(n):\n s = input().split()\n a.append({\"design\": s[0], \"value\": int(s[1])})\nb = a.copy()\n\nquick_sort(a, 0, n - 1)\n\nfor i in range(n - 1):\n if a[i][\"value\"] == a[i+1][\"value\"]:\n if b.index(a[i]) > b.index(a[i + 1]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n\nprint_a(a)\n" ]
19
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import sys\n", "import sys\nreadline = sys.stdin.readline\n", "import sys\nreadline = sys.stdin.readline\nimport sys\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\nf = lambda a, i: (a[0], int(a[1]), i)\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\nf = lambda a, i: (a[0], int(a[1]), i)\nA = [f(readline().split(), i) for i in range(n)]\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\nf = lambda a, i: (a[0], int(a[1]), i)\nA = [f(readline().split(), i) for i in range(n)]\nquicksort(A, 0, n - 1)\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\nf = lambda a, i: (a[0], int(a[1]), i)\nA = [f(readline().split(), i) for i in range(n)]\nquicksort(A, 0, n - 1)\nprint(\"Stable\" if isStable(A) else \"Not stable\")\n", "import sys\nreadline = sys.stdin.readline\nimport sys\nreadline = sys.stdin.readline\nINF = int(1e10)\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\nf = lambda a, i: (a[0], int(a[1]), i)\nA = [f(readline().split(), i) for i in range(n)]\nquicksort(A, 0, n - 1)\nprint(\"Stable\" if isStable(A) else \"Not stable\")\nprint(*(f\"{a} {b}\" for a, b, c in A), sep=\"\\n\")\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "# INPUT\n\n\n# PROCESS\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n \n\n return q\n\n\n# INPUT\n\n\n# PROCESS\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n \n return q\n\n\n# INPUT\n\n\n# PROCESS\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\n# INPUT\n\n\n# PROCESS\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\n# INPUT\n\n\n# PROCESS\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\n# INPUT\nn = int(input())\n\n\n# PROCESS\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\n# INPUT\nn = int(input())\n\nlist_card = []\n\n\n# PROCESS\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\n# INPUT\nn = int(input())\n\nlist_card = []\nfor _ in range(n):\n suit, num = input().split()\n \n\n# PROCESS\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\n# INPUT\nn = int(input())\n\nlist_card = []\nfor _ in range(n):\n suit, num = input().split()\n list_card.append([suit, int(num)])\n\n\n# PROCESS\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\n# INPUT\nn = int(input())\n\nlist_card = []\nfor _ in range(n):\n suit, num = input().split()\n list_card.append([suit, int(num)])\n\n\n# PROCESS\nflag_stable = True\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\n# INPUT\nn = int(input())\n\nlist_card = []\nfor _ in range(n):\n suit, num = input().split()\n list_card.append([suit, int(num)])\n\n\n# PROCESS\nflag_stable = True\n\nquicksort(list_card, 0, n-1)\n\n\n# OUTPUT\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\n# INPUT\nn = int(input())\n\nlist_card = []\nfor _ in range(n):\n suit, num = input().split()\n list_card.append([suit, int(num)])\n\n\n# PROCESS\nflag_stable = True\n\nquicksort(list_card, 0, n-1)\n\n\n# OUTPUT\nif flag_stable:\n print(\"Stable\")\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\n# INPUT\nn = int(input())\n\nlist_card = []\nfor _ in range(n):\n suit, num = input().split()\n list_card.append([suit, int(num)])\n\n\n# PROCESS\nflag_stable = True\n\nquicksort(list_card, 0, n-1)\n\n\n# OUTPUT\nif flag_stable:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "def partition(A, p, r):\n COLUMN_SORT = 1\n\n global flag_stable\n\n x = A[r][COLUMN_SORT]\n i = p - 1\n\n for j in range(p, r):\n if A[j][COLUMN_SORT] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n q = i + 1\n A[q], A[r] = A[r], A[q]\n\n for i in range(q + 1, r):\n if A[r] > A[i]:\n flag_stable = False\n\n return q\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\n# INPUT\nn = int(input())\n\nlist_card = []\nfor _ in range(n):\n suit, num = input().split()\n list_card.append([suit, int(num)])\n\n\n# PROCESS\nflag_stable = True\n\nquicksort(list_card, 0, n-1)\n\n\n# OUTPUT\nif flag_stable:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor card in list_card:\n print(*card)\n" ]
15
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "C = []\n", "import copy\n\n\nC = []\n", "import copy\nINF = 10000000000\n\n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n \n i = p-1\n \n \nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n \n \nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n \n \nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n \n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n \n \nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n \n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n \nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n \n \nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n \n \nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n \n \nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n \n \nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n \n \nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n \n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n \n return 0\n\n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n \n \n return 0\n\n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n \n \n return 0\n\n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n \n return 0\n\n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\n\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\nN = int(input())\nC = []\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\nN = int(input())\nC = []\nfor i in range(N):\n C.append(input().split())\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\nN = int(input())\nC = []\nfor i in range(N):\n C.append(input().split())\n C[i][1] = int(C[i][1])\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\nN = int(input())\nC = []\nfor i in range(N):\n C.append(input().split())\n C[i][1] = int(C[i][1])\n\nD = copy.deepcopy(C)\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\nN = int(input())\nC = []\nfor i in range(N):\n C.append(input().split())\n C[i][1] = int(C[i][1])\n\nD = copy.deepcopy(C)\nQsort(C,0,N-1)\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\nN = int(input())\nC = []\nfor i in range(N):\n C.append(input().split())\n C[i][1] = int(C[i][1])\n\nD = copy.deepcopy(C)\nQsort(C,0,N-1)\nmergeSort(D,0,N)\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\nN = int(input())\nC = []\nfor i in range(N):\n C.append(input().split())\n C[i][1] = int(C[i][1])\n\nD = copy.deepcopy(C)\nQsort(C,0,N-1)\nmergeSort(D,0,N)\n\nif C==D:\n print(\"Stable\")\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\nN = int(input())\nC = []\nfor i in range(N):\n C.append(input().split())\n C[i][1] = int(C[i][1])\n\nD = copy.deepcopy(C)\nQsort(C,0,N-1)\nmergeSort(D,0,N)\n\nif C==D:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import copy\nINF = 10000000000\ndef Partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n flag = 1\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef Qsort(A,p,r):\n if p < r:\n q = Partition(A,p,r)\n Qsort(A,p,q-1)\n Qsort(A,q+1,r)\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\nN = int(input())\nC = []\nfor i in range(N):\n C.append(input().split())\n C[i][1] = int(C[i][1])\n\nD = copy.deepcopy(C)\nQsort(C,0,N-1)\nmergeSort(D,0,N)\n\nif C==D:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\nfor i in range(N):\n print(C[i][0]+\" \"+str(C[i][1]))\n" ]
34
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import math\n", "import math\nimport copy\n", "import math\nimport copy\n\nn = int(input())\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n \n \n i = 0\n j = 0\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n \n i = 0\n j = 0\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n \n i = p\n \n \n return i\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n \n \n return i\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n \n\n return i\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n A[i], A[r] = A[r], A[i]\n\n return i\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n A[i], A[r] = A[r], A[i]\n\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n A[i], A[r] = A[r], A[i]\n\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\n\nB = copy.deepcopy(A)\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n A[i], A[r] = A[r], A[i]\n\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\n\nB = copy.deepcopy(A)\nmergeSort(A,0,n)\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n A[i], A[r] = A[r], A[i]\n\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\n\nB = copy.deepcopy(A)\nmergeSort(A,0,n)\nquickSort(B,0,n-1)\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n A[i], A[r] = A[r], A[i]\n\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\n\nB = copy.deepcopy(A)\nmergeSort(A,0,n)\nquickSort(B,0,n-1)\n\nif A == B:\n print(\"Stable\")\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n A[i], A[r] = A[r], A[i]\n\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\n\nB = copy.deepcopy(A)\nmergeSort(A,0,n)\nquickSort(B,0,n-1)\n\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n A[i], A[r] = A[r], A[i]\n\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\n\nB = copy.deepcopy(A)\nmergeSort(A,0,n)\nquickSort(B,0,n-1)\n\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nans = [str(x[0]) +\" \"+str(x[1]) for x in B]\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n A[i], A[r] = A[r], A[i]\n\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\n\nB = copy.deepcopy(A)\nmergeSort(A,0,n)\nquickSort(B,0,n-1)\n\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nans = [str(x[0]) +\" \"+str(x[1]) for x in B]\nans = '\\n'.join(ans)\n", "import math\nimport copy\n\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = [a, int(b)]\ninf = 10**9\n\ndef merge(A,left,mid,right):\n #global cnt\n L = A[left:mid] + [[inf,inf]]\n R = A[mid:right] + [[inf,inf]]\n i = 0\n j = 0\n\n for k in range(left,right):\n #cnt += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergeSort(A,left,right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A,left,mid)\n mergeSort(A,mid,right)\n merge(A,left,mid,right)\n\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p\n for j in range(p,r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i = i+1\n A[i], A[r] = A[r], A[i]\n\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\n\nB = copy.deepcopy(A)\nmergeSort(A,0,n)\nquickSort(B,0,n-1)\n\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nans = [str(x[0]) +\" \"+str(x[1]) for x in B]\nans = '\\n'.join(ans)\nprint(ans)\n" ]
26
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n return True\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n return True\n\nn = int(input())\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n return True\n\nn = int(input())\ncards = []\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n return True\n\nn = int(input())\ncards = []\nfor i in range(n):\n mark, num = map(str, input().split())\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n return True\n\nn = int(input())\ncards = []\nfor i in range(n):\n mark, num = map(str, input().split())\n cards.append(Card(mark, int(num), i))\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n return True\n\nn = int(input())\ncards = []\nfor i in range(n):\n mark, num = map(str, input().split())\n cards.append(Card(mark, int(num), i))\n\nquick_sort(cards, 0, n - 1)\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n return True\n\nn = int(input())\ncards = []\nfor i in range(n):\n mark, num = map(str, input().split())\n cards.append(Card(mark, int(num), i))\n\nquick_sort(cards, 0, n - 1)\nstable = check_stability(cards)\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n return True\n\nn = int(input())\ncards = []\nfor i in range(n):\n mark, num = map(str, input().split())\n cards.append(Card(mark, int(num), i))\n\nquick_sort(cards, 0, n - 1)\nstable = check_stability(cards)\nif stable == True:\n print('Stable')\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n return True\n\nn = int(input())\ncards = []\nfor i in range(n):\n mark, num = map(str, input().split())\n cards.append(Card(mark, int(num), i))\n\nquick_sort(cards, 0, n - 1)\nstable = check_stability(cards)\nif stable == True:\n print('Stable')\nelse:\n print('Not stable')\n", "class Card:\n def __init__(self, mark, num, order):\n self.mark = mark\n self.num = num\n self.order = order\n def __str__(self):\n return self.mark + ' ' + str(self.num)\n\ndef quick_sort(cards, p, r):\n if p < r:\n q = partition(cards, p, r)\n quick_sort(cards, p, q - 1)\n quick_sort(cards, q + 1, r)\n\ndef partition(cards, p, r):\n x = cards[r].num\n i = p - 1\n for j in range(p, r):\n if cards[j].num <= x:\n i += 1;\n swap(cards, i, j)\n swap(cards, i + 1, r)\n return i + 1\n\ndef swap(cards, i, j):\n tmp = cards[i]\n cards[i] = cards[j]\n cards[j] = tmp\n\ndef check_stability(cards):\n for i in range(1, len(cards)):\n c1 = cards[i-1]\n c2 = cards[i]\n if c1.num == c2.num and c1.order > c2.order:\n return False\n return True\n\nn = int(input())\ncards = []\nfor i in range(n):\n mark, num = map(str, input().split())\n cards.append(Card(mark, int(num), i))\n\nquick_sort(cards, 0, n - 1)\nstable = check_stability(cards)\nif stable == True:\n print('Stable')\nelse:\n print('Not stable')\nfor i in range(n):\n print(cards[i])\n" ]
21
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "#ALDS1_6_C Quick Sort\n\n# sys.setrecursionlimit(10000)\n\n\nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\n\n\nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n \n j = p\n \n \n return j\n\n\nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n \n \n return j\n\n\nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n \n return j\n\n\nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n \n \n i = 0\n j = 0\n\n \nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n \n\n i = 0\n j = 0\n\n \nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n \n i = 0\n j = 0\n\n \nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n \n\n i = 0\n j = 0\n\n \nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n \nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nn = int(input())\nA = []\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n suit, num = input().split()\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n suit, num = input().split()\n A.append([suit, int(num)])\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n suit, num = input().split()\n A.append([suit, int(num)])\nA1 = A.copy()\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n suit, num = input().split()\n A.append([suit, int(num)])\nA1 = A.copy()\n\nquick_sort(A, 0, n-1)\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n suit, num = input().split()\n A.append([suit, int(num)])\nA1 = A.copy()\n\nquick_sort(A, 0, n-1)\nmerge_sort(A1, 0, n)\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n suit, num = input().split()\n A.append([suit, int(num)])\nA1 = A.copy()\n\nquick_sort(A, 0, n-1)\nmerge_sort(A1, 0, n)\n\nif A != A1:\n print('Not stable')\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n suit, num = input().split()\n A.append([suit, int(num)])\nA1 = A.copy()\n\nquick_sort(A, 0, n-1)\nmerge_sort(A1, 0, n)\n\nif A != A1:\n print('Not stable')\nelse:\n print('Stable')\n", "#ALDS1_6_C Quick Sort\nimport sys\n# sys.setrecursionlimit(10000)\ndef partition(A, p, r):\n q = A[r][1]\n j = p\n for i in range(p, r):\n if A[i][1] <= q:\n A[i], A[j] = A[j], A[i]\n j += 1\n A[j], A[r] = A[r], A[j]\n return j\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n l = A[left: mid]\n r = A[mid: right]\n\n l.append([None, float('inf')])\n r.append([None, float('inf')])\n\n i = 0\n j = 0\n\n for k in range(left, right, 1):\n if l[i][1] <= r[j][1]:\n A[k] = l[i]\n i += 1\n else:\n A[k] = r[j]\n j += 1\n\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n suit, num = input().split()\n A.append([suit, int(num)])\nA1 = A.copy()\n\nquick_sort(A, 0, n-1)\nmerge_sort(A1, 0, n)\n\nif A != A1:\n print('Not stable')\nelse:\n print('Stable')\n\nfor i in range(n):\n print(' '.join(map(str, A[i])))\n" ]
24
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "# -*- coding: utf-8 -*-\n\na = []\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n \n return s\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n temp = a[i]\n a[i] = a[j]\n a[j] = temp\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n temp = a[i]\n a[i] = a[j]\n a[j] = temp\n temp = a[i+1]\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n temp = a[i]\n a[i] = a[j]\n a[j] = temp\n temp = a[i+1]\n a[i+1] = a[r]\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n temp = a[i]\n a[i] = a[j]\n a[j] = temp\n temp = a[i+1]\n a[i+1] = a[r]\n a[r] = temp\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n temp = a[i]\n a[i] = a[j]\n a[j] = temp\n temp = a[i+1]\n a[i+1] = a[r]\n a[r] = temp\n return i+1\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n temp = a[i]\n a[i] = a[j]\n a[j] = temp\n temp = a[i+1]\n a[i+1] = a[r]\n a[r] = temp\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n temp = a[i]\n a[i] = a[j]\n a[j] = temp\n temp = a[i+1]\n a[i+1] = a[r]\n a[r] = temp\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\nquick_sort(a, 0, len(a)-1)\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n temp = a[i]\n a[i] = a[j]\n a[j] = temp\n temp = a[i+1]\n a[i+1] = a[r]\n a[r] = temp\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\nquick_sort(a, 0, len(a)-1)\nif is_stable(a_in, a):\n print('Stable')\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n temp = a[i]\n a[i] = a[j]\n a[j] = temp\n temp = a[i+1]\n a[i+1] = a[r]\n a[r] = temp\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\nquick_sort(a, 0, len(a)-1)\nif is_stable(a_in, a):\n print('Stable')\nelse:\n print('Not stable')\n", "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu May 3 21:24:25 2018\nALDS1_6_C\n@author: maezawa\n\"\"\"\na = []\nn = int(input())\nfor i in range(n):\n s = input().split()\n a.append([s[0], int(s[1])])\n\na_in = a.copy()\n\ndef is_stable(a, b):\n s = True\n for i in range(n-1):\n if b[i+1][1] == b[i][1]:\n j = a.index(b[i])\n k = a.index(b[i+1])\n if j > k:\n s = False\n return s\n return s\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n temp = a[i]\n a[i] = a[j]\n a[j] = temp\n temp = a[i+1]\n a[i+1] = a[r]\n a[r] = temp\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\nquick_sort(a, 0, len(a)-1)\nif is_stable(a_in, a):\n print('Stable')\nelse:\n print('Not stable')\nfor i in range(len(a)):\n print('{} {}'.format(a[i][0],a[i][1]))\n" ]
21
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n", "import copy\n\nA = []\n", "import copy\nn = int(input())\nA = []\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[1]))\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[1]))\n\ndef Partition(A, p, r):\n i = p - 1\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[1]))\n\ndef Partition(A, p, r):\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= int(A[r][1]):\n i += 1\n A[i], A[j] = A[j], A[i]\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[1]))\n\ndef Partition(A, p, r):\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= int(A[r][1]):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[1]))\n\ndef Partition(A, p, r):\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= int(A[r][1]):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[1]))\n\ndef Partition(A, p, r):\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= int(A[r][1]):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\ndef QuickSort(A, p, r):\n if p >= r:\n return None\n else:\n q, A = Partition(A, p, r)\n QuickSort(A, p, q-1)\n QuickSort(A, q+1, r)\n return A\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[1]))\n\ndef Partition(A, p, r):\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= int(A[r][1]):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\ndef QuickSort(A, p, r):\n if p >= r:\n return None\n else:\n q, A = Partition(A, p, r)\n QuickSort(A, p, q-1)\n QuickSort(A, q+1, r)\n return A\n\nQuickSort(A, 0, n-1)\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[1]))\n\ndef Partition(A, p, r):\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= int(A[r][1]):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\ndef QuickSort(A, p, r):\n if p >= r:\n return None\n else:\n q, A = Partition(A, p, r)\n QuickSort(A, p, q-1)\n QuickSort(A, q+1, r)\n return A\n\nQuickSort(A, 0, n-1)\nif A == B:\n print(\"Stable\")\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[1]))\n\ndef Partition(A, p, r):\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= int(A[r][1]):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\ndef QuickSort(A, p, r):\n if p >= r:\n return None\n else:\n q, A = Partition(A, p, r)\n QuickSort(A, p, q-1)\n QuickSort(A, q+1, r)\n return A\n\nQuickSort(A, 0, n-1)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import copy\nn = int(input())\nA = []\nfor ni in range(n):\n A.append(input().split())\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[1]))\n\ndef Partition(A, p, r):\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= int(A[r][1]):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\ndef QuickSort(A, p, r):\n if p >= r:\n return None\n else:\n q, A = Partition(A, p, r)\n QuickSort(A, p, q-1)\n QuickSort(A, q+1, r)\n return A\n\nQuickSort(A, 0, n-1)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\nfor ni in range(n):\n print(*A[ni], sep=\" \")\n" ]
16
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def make_card(i, card):\n suit, value = card.split()\n return (int(value), i, card)\n\n\ndef partition_stable(a, p, r):\n x, i = a[r], p - 1\n for j in range(p, r):\n if a[j] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n i += 1\n a[i], a[r] = a[r], a[i]\n return i\n\n\ndef partition_not_stable(a, p, r):\n x, i = a[r][0], p - 1\n for j in range(p, r):\n if a[j][0] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n i += 1\n a[i], a[r] = a[r], a[i]\n return i\n\n\ndef quick_sort(a, p, r, func):\n if p < r:\n q = func(a, p, r)\n quick_sort(a, p, q - 1, func)\n quick_sort(a, q + 1, r, func)\n\n\nn = int(input())\na = list(make_card(i, input()) for i in range(n))\nb = a[:]\n", "def make_card(i, card):\n suit, value = card.split()\n return (int(value), i, card)\n\n\ndef partition_stable(a, p, r):\n x, i = a[r], p - 1\n for j in range(p, r):\n if a[j] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n i += 1\n a[i], a[r] = a[r], a[i]\n return i\n\n\ndef partition_not_stable(a, p, r):\n x, i = a[r][0], p - 1\n for j in range(p, r):\n if a[j][0] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n i += 1\n a[i], a[r] = a[r], a[i]\n return i\n\n\ndef quick_sort(a, p, r, func):\n if p < r:\n q = func(a, p, r)\n quick_sort(a, p, q - 1, func)\n quick_sort(a, q + 1, r, func)\n\n\nn = int(input())\na = list(make_card(i, input()) for i in range(n))\nb = a[:]\n\nquick_sort(a, 0, n - 1, partition_not_stable)\n", "def make_card(i, card):\n suit, value = card.split()\n return (int(value), i, card)\n\n\ndef partition_stable(a, p, r):\n x, i = a[r], p - 1\n for j in range(p, r):\n if a[j] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n i += 1\n a[i], a[r] = a[r], a[i]\n return i\n\n\ndef partition_not_stable(a, p, r):\n x, i = a[r][0], p - 1\n for j in range(p, r):\n if a[j][0] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n i += 1\n a[i], a[r] = a[r], a[i]\n return i\n\n\ndef quick_sort(a, p, r, func):\n if p < r:\n q = func(a, p, r)\n quick_sort(a, p, q - 1, func)\n quick_sort(a, q + 1, r, func)\n\n\nn = int(input())\na = list(make_card(i, input()) for i in range(n))\nb = a[:]\n\nquick_sort(a, 0, n - 1, partition_not_stable)\nquick_sort(b, 0, n - 1, partition_stable)\n", "def make_card(i, card):\n suit, value = card.split()\n return (int(value), i, card)\n\n\ndef partition_stable(a, p, r):\n x, i = a[r], p - 1\n for j in range(p, r):\n if a[j] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n i += 1\n a[i], a[r] = a[r], a[i]\n return i\n\n\ndef partition_not_stable(a, p, r):\n x, i = a[r][0], p - 1\n for j in range(p, r):\n if a[j][0] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n i += 1\n a[i], a[r] = a[r], a[i]\n return i\n\n\ndef quick_sort(a, p, r, func):\n if p < r:\n q = func(a, p, r)\n quick_sort(a, p, q - 1, func)\n quick_sort(a, q + 1, r, func)\n\n\nn = int(input())\na = list(make_card(i, input()) for i in range(n))\nb = a[:]\n\nquick_sort(a, 0, n - 1, partition_not_stable)\nquick_sort(b, 0, n - 1, partition_stable)\nprint(('S' if a == b else 'Not s') + 'table')\n", "def make_card(i, card):\n suit, value = card.split()\n return (int(value), i, card)\n\n\ndef partition_stable(a, p, r):\n x, i = a[r], p - 1\n for j in range(p, r):\n if a[j] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n i += 1\n a[i], a[r] = a[r], a[i]\n return i\n\n\ndef partition_not_stable(a, p, r):\n x, i = a[r][0], p - 1\n for j in range(p, r):\n if a[j][0] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n i += 1\n a[i], a[r] = a[r], a[i]\n return i\n\n\ndef quick_sort(a, p, r, func):\n if p < r:\n q = func(a, p, r)\n quick_sort(a, p, q - 1, func)\n quick_sort(a, q + 1, r, func)\n\n\nn = int(input())\na = list(make_card(i, input()) for i in range(n))\nb = a[:]\n\nquick_sort(a, 0, n - 1, partition_not_stable)\nquick_sort(b, 0, n - 1, partition_stable)\nprint(('S' if a == b else 'Not s') + 'table')\nprint('\\n'.join(card[2] for card in a))\n" ]
6
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "INF = 1000000000\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n \n \n i = 0\n j = 0\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n \n \n i = 0\n j = 0\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n \n \n i = 0\n j = 0\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n \n i = 0\n j = 0\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n \n A = []\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n n = int(input())\n A = []\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n n = int(input())\n A = []\n for _ in range(n):\n suit, value = input().split()\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n n = int(input())\n A = []\n for _ in range(n):\n suit, value = input().split()\n A.append(Card(suit, int(value)))\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n n = int(input())\n A = []\n for _ in range(n):\n suit, value = input().split()\n A.append(Card(suit, int(value)))\n\n B = A.copy()\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n n = int(input())\n A = []\n for _ in range(n):\n suit, value = input().split()\n A.append(Card(suit, int(value)))\n\n B = A.copy()\n quickSort(A, 0, n - 1)\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n n = int(input())\n A = []\n for _ in range(n):\n suit, value = input().split()\n A.append(Card(suit, int(value)))\n\n B = A.copy()\n quickSort(A, 0, n - 1)\n mergeSort(B, 0, n)\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n n = int(input())\n A = []\n for _ in range(n):\n suit, value = input().split()\n A.append(Card(suit, int(value)))\n\n B = A.copy()\n quickSort(A, 0, n - 1)\n mergeSort(B, 0, n)\n if A == B:\n print(\"Stable\")\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n n = int(input())\n A = []\n for _ in range(n):\n suit, value = input().split()\n A.append(Card(suit, int(value)))\n\n B = A.copy()\n quickSort(A, 0, n - 1)\n mergeSort(B, 0, n)\n if A == B:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n n = int(input())\n A = []\n for _ in range(n):\n suit, value = input().split()\n A.append(Card(suit, int(value)))\n\n B = A.copy()\n quickSort(A, 0, n - 1)\n mergeSort(B, 0, n)\n if A == B:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n for card in A:\n print(card)\n", "INF = 1000000000\n\nclass Card:\n def __init__(self, suit, value):\n self.suit = suit\n self.value = value\n\n def __repr__(self):\n return self.suit + ' ' + str(self.value)\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if A[j].value <= x.value:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(Card(\"INF\", INF))\n R.append(Card(\"INF\", INF))\n i = 0\n j = 0\n for k in range(left, right):\n if L[i].value <= R[j].value:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == \"__main__\":\n n = int(input())\n A = []\n for _ in range(n):\n suit, value = input().split()\n A.append(Card(suit, int(value)))\n\n B = A.copy()\n quickSort(A, 0, n - 1)\n mergeSort(B, 0, n)\n if A == B:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n for card in A:\n print(card)\n" ]
29
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "#クイックソート\n", "#クイックソート\nimport copy\n", "#クイックソート\nimport copy\n\nINF = 10000000000\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n \n return 0\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n \n \n return 0\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n \n \n return 0\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n \n return 0\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n \n i = p\n \n\n return i\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n \n\n return i\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n return i\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\nA = [(a[0], int(a[1])) for a in A]\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\nA = [(a[0], int(a[1])) for a in A]\nB = [(a[0], int(a[1])) for a in A]\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\nA = [(a[0], int(a[1])) for a in A]\nB = [(a[0], int(a[1])) for a in A]\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\nA = [(a[0], int(a[1])) for a in A]\nB = [(a[0], int(a[1])) for a in A]\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nquickSort(A, 0, n-1)\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\nA = [(a[0], int(a[1])) for a in A]\nB = [(a[0], int(a[1])) for a in A]\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\nA = [(a[0], int(a[1])) for a in A]\nB = [(a[0], int(a[1])) for a in A]\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print('Stable')\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\nA = [(a[0], int(a[1])) for a in A]\nB = [(a[0], int(a[1])) for a in A]\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print('Stable')\nelse:\n print(\"Not stable\")\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\nA = [(a[0], int(a[1])) for a in A]\nB = [(a[0], int(a[1])) for a in A]\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print('Stable')\nelse:\n print(\"Not stable\")\n\nans = [str(a[0])+\" \"+str(a[1]) for a in A]\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\nA = [(a[0], int(a[1])) for a in A]\nB = [(a[0], int(a[1])) for a in A]\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print('Stable')\nelse:\n print(\"Not stable\")\n\nans = [str(a[0])+\" \"+str(a[1]) for a in A]\nans = '\\n'.join(ans)\n", "#クイックソート\nimport copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p\n for j in range(p, r):\n if A[j][1] <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n\n\n A[i], A[r] = A[r], A[i]\n\n return i\n\nn = int(input())\nA = [input().split() for _ in range(n)]\nA = [(a[0], int(a[1])) for a in A]\nB = [(a[0], int(a[1])) for a in A]\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print('Stable')\nelse:\n print(\"Not stable\")\n\nans = [str(a[0])+\" \"+str(a[1]) for a in A]\nans = '\\n'.join(ans)\nprint(ans)\n" ]
35
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "from collections import namedtuple\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n \n \n return i\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n \n return i\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n \n \n A = []\n \n \n return A\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n \n A = []\n \n \n return A\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n \n \n return A\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n \n \n return A\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n \n \n return A\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n \n return A\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n\ndef mergeSort(A):\n if len(A)==1: return A\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n\ndef mergeSort(A):\n if len(A)==1: return A\n m = len(A)//2\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n\ndef mergeSort(A):\n if len(A)==1: return A\n m = len(A)//2\n return merge(mergeSort(A[:m]),mergeSort(A[m:]))\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n\ndef mergeSort(A):\n if len(A)==1: return A\n m = len(A)//2\n return merge(mergeSort(A[:m]),mergeSort(A[m:]))\n\nif __name__=='__main__':\n n = int(input())\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n\ndef mergeSort(A):\n if len(A)==1: return A\n m = len(A)//2\n return merge(mergeSort(A[:m]),mergeSort(A[m:]))\n\nif __name__=='__main__':\n n = int(input())\n Co = list(map(lambda X: Card(X[0],int(X[1])), [input().split() for _ in range(n)]))\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n\ndef mergeSort(A):\n if len(A)==1: return A\n m = len(A)//2\n return merge(mergeSort(A[:m]),mergeSort(A[m:]))\n\nif __name__=='__main__':\n n = int(input())\n Co = list(map(lambda X: Card(X[0],int(X[1])), [input().split() for _ in range(n)]))\n Cq = Co[:]\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n\ndef mergeSort(A):\n if len(A)==1: return A\n m = len(A)//2\n return merge(mergeSort(A[:m]),mergeSort(A[m:]))\n\nif __name__=='__main__':\n n = int(input())\n Co = list(map(lambda X: Card(X[0],int(X[1])), [input().split() for _ in range(n)]))\n Cq = Co[:]\n Cm = mergeSort(Co[:])\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n\ndef mergeSort(A):\n if len(A)==1: return A\n m = len(A)//2\n return merge(mergeSort(A[:m]),mergeSort(A[m:]))\n\nif __name__=='__main__':\n n = int(input())\n Co = list(map(lambda X: Card(X[0],int(X[1])), [input().split() for _ in range(n)]))\n Cq = Co[:]\n Cm = mergeSort(Co[:])\n quickSort(Cq,0,n-1)\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n\ndef mergeSort(A):\n if len(A)==1: return A\n m = len(A)//2\n return merge(mergeSort(A[:m]),mergeSort(A[m:]))\n\nif __name__=='__main__':\n n = int(input())\n Co = list(map(lambda X: Card(X[0],int(X[1])), [input().split() for _ in range(n)]))\n Cq = Co[:]\n Cm = mergeSort(Co[:])\n quickSort(Cq,0,n-1)\n print(\"Stable\" if Cq==Cm[::-1] else \"Not stable\")\n", "from collections import namedtuple\nCard = namedtuple('Card', 'suit value')\n\ndef partition(A,p,r):\n x = A[r]\n i = p\n for j in range(p,r):\n if A[j].value <= x.value:\n A[i],A[j] = A[j],A[i]\n i += 1\n A[i],A[r] = A[r],A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\ndef merge(L,R):\n global cnt\n n = len(L)+len(R)\n A = []\n i = j = 0\n L.append(Card('X',-1))\n R.append(Card('X',-1))\n for _ in range(n):\n if L[i].value > R[j].value:\n A.append(L[i])\n i += 1\n else:\n A.append(R[j])\n j += 1\n return A\n\ndef mergeSort(A):\n if len(A)==1: return A\n m = len(A)//2\n return merge(mergeSort(A[:m]),mergeSort(A[m:]))\n\nif __name__=='__main__':\n n = int(input())\n Co = list(map(lambda X: Card(X[0],int(X[1])), [input().split() for _ in range(n)]))\n Cq = Co[:]\n Cm = mergeSort(Co[:])\n quickSort(Cq,0,n-1)\n print(\"Stable\" if Cq==Cm[::-1] else \"Not stable\")\n for c in Cq: print(c.suit,c.value)\n" ]
24
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "# -*- coding: utf-8 -*-\n\n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\n\n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\n\n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n \n \n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n \n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n \n i = p-1\n \n \n # 基準となった末尾要素のindex\n \n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n x = aN[r][1]\n i = p-1\n \n \n # 基準となった末尾要素のindex\n \n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n x = aN[r][1]\n i = p-1\n for j in range(p, r):\n if aN[j][1] <= x:\n i = i+1\n aN[i], aN[j] = aN[j], aN[i]\n \n # 基準となった末尾要素のindex\n \n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n x = aN[r][1]\n i = p-1\n for j in range(p, r):\n if aN[j][1] <= x:\n i = i+1\n aN[i], aN[j] = aN[j], aN[i]\n aN[i+1], aN[r] = aN[r], aN[i+1]\n # 基準となった末尾要素のindex\n \n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n x = aN[r][1]\n i = p-1\n for j in range(p, r):\n if aN[j][1] <= x:\n i = i+1\n aN[i], aN[j] = aN[j], aN[i]\n aN[i+1], aN[r] = aN[r], aN[i+1]\n # 基準となった末尾要素のindex\n return i+1\n\n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n x = aN[r][1]\n i = p-1\n for j in range(p, r):\n if aN[j][1] <= x:\n i = i+1\n aN[i], aN[j] = aN[j], aN[i]\n aN[i+1], aN[r] = aN[r], aN[i+1]\n # 基準となった末尾要素のindex\n return i+1\n\ndef quick_sort(p, r):\n if p < r:\n # 再帰処理の中でパーティションを使う\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n# 安定比較用にライブラリで安定ソートする\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n x = aN[r][1]\n i = p-1\n for j in range(p, r):\n if aN[j][1] <= x:\n i = i+1\n aN[i], aN[j] = aN[j], aN[i]\n aN[i+1], aN[r] = aN[r], aN[i+1]\n # 基準となった末尾要素のindex\n return i+1\n\ndef quick_sort(p, r):\n if p < r:\n # 再帰処理の中でパーティションを使う\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n# 安定比較用にライブラリで安定ソートする\naN2 = sorted(aN, key=lambda x: x[1])\n\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n x = aN[r][1]\n i = p-1\n for j in range(p, r):\n if aN[j][1] <= x:\n i = i+1\n aN[i], aN[j] = aN[j], aN[i]\n aN[i+1], aN[r] = aN[r], aN[i+1]\n # 基準となった末尾要素のindex\n return i+1\n\ndef quick_sort(p, r):\n if p < r:\n # 再帰処理の中でパーティションを使う\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n# 安定比較用にライブラリで安定ソートする\naN2 = sorted(aN, key=lambda x: x[1])\nquick_sort(0, N-1)\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n x = aN[r][1]\n i = p-1\n for j in range(p, r):\n if aN[j][1] <= x:\n i = i+1\n aN[i], aN[j] = aN[j], aN[i]\n aN[i+1], aN[r] = aN[r], aN[i+1]\n # 基準となった末尾要素のindex\n return i+1\n\ndef quick_sort(p, r):\n if p < r:\n # 再帰処理の中でパーティションを使う\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n# 安定比較用にライブラリで安定ソートする\naN2 = sorted(aN, key=lambda x: x[1])\nquick_sort(0, N-1)\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\nif all([aN[i][0] == aN2[i][0] for i in range(N)]):\n print('Stable')\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n x = aN[r][1]\n i = p-1\n for j in range(p, r):\n if aN[j][1] <= x:\n i = i+1\n aN[i], aN[j] = aN[j], aN[i]\n aN[i+1], aN[r] = aN[r], aN[i+1]\n # 基準となった末尾要素のindex\n return i+1\n\ndef quick_sort(p, r):\n if p < r:\n # 再帰処理の中でパーティションを使う\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n# 安定比較用にライブラリで安定ソートする\naN2 = sorted(aN, key=lambda x: x[1])\nquick_sort(0, N-1)\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\nif all([aN[i][0] == aN2[i][0] for i in range(N)]):\n print('Stable')\nelse:\n print('Not stable')\n", "# -*- coding: utf-8 -*-\n\n\"\"\"\nクイックソート\n\"\"\"\n\nN = int(input())\naN = [[None] * 2 for i in range(N)]\nfor i in range(N):\n suit, num = input().split()\n aN[i][0] = suit\n aN[i][1] = int(num)\n\ndef partition(p, r):\n # 今回は基準xの選び方が最後尾固定だけど、\n # これをうまく選ぶ方がクイックソートは高速になる\n x = aN[r][1]\n i = p-1\n for j in range(p, r):\n if aN[j][1] <= x:\n i = i+1\n aN[i], aN[j] = aN[j], aN[i]\n aN[i+1], aN[r] = aN[r], aN[i+1]\n # 基準となった末尾要素のindex\n return i+1\n\ndef quick_sort(p, r):\n if p < r:\n # 再帰処理の中でパーティションを使う\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n# 安定比較用にライブラリで安定ソートする\naN2 = sorted(aN, key=lambda x: x[1])\nquick_sort(0, N-1)\n\n# クイックソートは安定ではないが、\n# マージソートに対して、メモリ領域を使わない利点がある\nif all([aN[i][0] == aN2[i][0] for i in range(N)]):\n print('Stable')\nelse:\n print('Not stable')\n\nfor i in range(N):\n print(*aN[i])\n" ]
19
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import copy\n", "import copy\n\ndef swap(a, b):\n return b, a\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n \n return A\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n \n \n return A\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n \n return A\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n \n \n i = 0\n j = 0\n \n return A\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n \n \n i = 0\n j = 0\n \n return A\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n \n \n i = 0\n j = 0\n \n return A\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n \n i = 0\n j = 0\n \n return A\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n \n return A\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n\ndef read_n_lows_input(n):\n Alist=[[j for j in input().split()] for i in range(n)]\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n\ndef read_n_lows_input(n):\n Alist=[[j for j in input().split()] for i in range(n)]\n return Alist\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n\ndef read_n_lows_input(n):\n Alist=[[j for j in input().split()] for i in range(n)]\n return Alist\n\nn = int(input())\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n\ndef read_n_lows_input(n):\n Alist=[[j for j in input().split()] for i in range(n)]\n return Alist\n\nn = int(input())\nA = read_n_lows_input(n)\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n\ndef read_n_lows_input(n):\n Alist=[[j for j in input().split()] for i in range(n)]\n return Alist\n\nn = int(input())\nA = read_n_lows_input(n)\nB = copy.deepcopy(A)\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n\ndef read_n_lows_input(n):\n Alist=[[j for j in input().split()] for i in range(n)]\n return Alist\n\nn = int(input())\nA = read_n_lows_input(n)\nB = copy.deepcopy(A)\nquick_sort(A, 0, n-1)\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n\ndef read_n_lows_input(n):\n Alist=[[j for j in input().split()] for i in range(n)]\n return Alist\n\nn = int(input())\nA = read_n_lows_input(n)\nB = copy.deepcopy(A)\nquick_sort(A, 0, n-1)\nmerge_sort(B, 0, n)\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n\ndef read_n_lows_input(n):\n Alist=[[j for j in input().split()] for i in range(n)]\n return Alist\n\nn = int(input())\nA = read_n_lows_input(n)\nB = copy.deepcopy(A)\nquick_sort(A, 0, n-1)\nmerge_sort(B, 0, n)\nif A == B:\n print(\"Stable\")\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n\ndef read_n_lows_input(n):\n Alist=[[j for j in input().split()] for i in range(n)]\n return Alist\n\nn = int(input())\nA = read_n_lows_input(n)\nB = copy.deepcopy(A)\nquick_sort(A, 0, n-1)\nmerge_sort(B, 0, n)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import copy\n\ndef swap(a, b):\n return b, a\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i+1\n A[i], A[j] = swap(A[i], A[j])\n A[i+1], A[r] = swap(A[i+1], A[r])\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n return A\n\ndef merge(A, left, mid, right):\n L = A[left:mid]\n R = A[mid:right]\n L.append(['X', float('inf')])\n R.append(['X', float('inf')])\n i = 0\n j = 0\n for k in range(left, right):\n if float(L[i][1]) <= float(R[j][1]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return A\n\ndef merge_sort(A, left, right):\n if left+1 < right:\n mid = (left + right) >> 1\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n return merge(A, left, mid, right)\n\ndef read_n_lows_input(n):\n Alist=[[j for j in input().split()] for i in range(n)]\n return Alist\n\nn = int(input())\nA = read_n_lows_input(n)\nB = copy.deepcopy(A)\nquick_sort(A, 0, n-1)\nmerge_sort(B, 0, n)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\nfor i in A:\n print(*i, sep=\" \")\n" ]
29
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(A, p, r):\n \n i = p-1\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ncard = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ncard = []\nfor i in range(n):\n word, num = input().split()\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ncard = []\nfor i in range(n):\n word, num = input().split()\n card.append([word, int(num), int(i)])\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ncard = []\nfor i in range(n):\n word, num = input().split()\n card.append([word, int(num), int(i)])\n\ndef checkstable(card):\n for i in range(len(card) - 1):\n if card[i][1] == card[i + 1][1] and card[i][2] > card[i+1][2]:\n return \"Not stable\"\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ncard = []\nfor i in range(n):\n word, num = input().split()\n card.append([word, int(num), int(i)])\n\ndef checkstable(card):\n for i in range(len(card) - 1):\n if card[i][1] == card[i + 1][1] and card[i][2] > card[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ncard = []\nfor i in range(n):\n word, num = input().split()\n card.append([word, int(num), int(i)])\n\ndef checkstable(card):\n for i in range(len(card) - 1):\n if card[i][1] == card[i + 1][1] and card[i][2] > card[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nquicksort(card, 0, n-1)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ncard = []\nfor i in range(n):\n word, num = input().split()\n card.append([word, int(num), int(i)])\n\ndef checkstable(card):\n for i in range(len(card) - 1):\n if card[i][1] == card[i + 1][1] and card[i][2] > card[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nquicksort(card, 0, n-1)\n\nprint(checkstable(card))\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n memo = A[i]\n A[i] = A[j]\n A[j] = memo\n memo = A[i+1]\n A[i+1] = A[r]\n A[r] = memo\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ncard = []\nfor i in range(n):\n word, num = input().split()\n card.append([word, int(num), int(i)])\n\ndef checkstable(card):\n for i in range(len(card) - 1):\n if card[i][1] == card[i + 1][1] and card[i][2] > card[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nquicksort(card, 0, n-1)\n\nprint(checkstable(card))\nfor c in card:\n print(c[0], c[1])\n" ]
18
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def decode():\n n = int(input())\n", "def decode():\n n = int(input())\n cards = []\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n \n \n a[r] = t\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n \n a[r] = t\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n\n return i+1\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n\n return i+1\n\n\ndef disp(cards):\n for (m, n, _) in cards:\n print(\"{0} {1}\".format(m, n))\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n\n return i+1\n\n\ndef disp(cards):\n for (m, n, _) in cards:\n print(\"{0} {1}\".format(m, n))\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n\n return i+1\n\n\ndef disp(cards):\n for (m, n, _) in cards:\n print(\"{0} {1}\".format(m, n))\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(cards):\n for i in range(len(cards) - 1):\n if cards[i][1] == cards[i+1][1]:\n if cards[i][2] < cards[i+1][2]:\n pass\n else:\n return False\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n\n return i+1\n\n\ndef disp(cards):\n for (m, n, _) in cards:\n print(\"{0} {1}\".format(m, n))\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(cards):\n for i in range(len(cards) - 1):\n if cards[i][1] == cards[i+1][1]:\n if cards[i][2] < cards[i+1][2]:\n pass\n else:\n return False\n return True\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n\n return i+1\n\n\ndef disp(cards):\n for (m, n, _) in cards:\n print(\"{0} {1}\".format(m, n))\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(cards):\n for i in range(len(cards) - 1):\n if cards[i][1] == cards[i+1][1]:\n if cards[i][2] < cards[i+1][2]:\n pass\n else:\n return False\n return True\n\nif __name__ == '__main__':\n n, cards = decode()\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n\n return i+1\n\n\ndef disp(cards):\n for (m, n, _) in cards:\n print(\"{0} {1}\".format(m, n))\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(cards):\n for i in range(len(cards) - 1):\n if cards[i][1] == cards[i+1][1]:\n if cards[i][2] < cards[i+1][2]:\n pass\n else:\n return False\n return True\n\nif __name__ == '__main__':\n n, cards = decode()\n\n quicksort(cards, 0, n-1)\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n\n return i+1\n\n\ndef disp(cards):\n for (m, n, _) in cards:\n print(\"{0} {1}\".format(m, n))\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(cards):\n for i in range(len(cards) - 1):\n if cards[i][1] == cards[i+1][1]:\n if cards[i][2] < cards[i+1][2]:\n pass\n else:\n return False\n return True\n\nif __name__ == '__main__':\n n, cards = decode()\n\n quicksort(cards, 0, n-1)\n\n if isstable(cards):\n print(\"Stable\")\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n\n return i+1\n\n\ndef disp(cards):\n for (m, n, _) in cards:\n print(\"{0} {1}\".format(m, n))\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(cards):\n for i in range(len(cards) - 1):\n if cards[i][1] == cards[i+1][1]:\n if cards[i][2] < cards[i+1][2]:\n pass\n else:\n return False\n return True\n\nif __name__ == '__main__':\n n, cards = decode()\n\n quicksort(cards, 0, n-1)\n\n if isstable(cards):\n print(\"Stable\")\n else:\n print(\"Not stable\")\n", "def decode():\n n = int(input())\n cards = []\n for i in range(n):\n [m, v] = input().split()\n cards.append((m, int(v), i))\n\n return n, cards\n\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n t = a[j]\n a[j] = a[i]\n a[i] = t\n t = a[i+1]\n a[i+1] = a[r]\n a[r] = t\n\n return i+1\n\n\ndef disp(cards):\n for (m, n, _) in cards:\n print(\"{0} {1}\".format(m, n))\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(cards):\n for i in range(len(cards) - 1):\n if cards[i][1] == cards[i+1][1]:\n if cards[i][2] < cards[i+1][2]:\n pass\n else:\n return False\n return True\n\nif __name__ == '__main__':\n n, cards = decode()\n\n quicksort(cards, 0, n-1)\n\n if isstable(cards):\n print(\"Stable\")\n else:\n print(\"Not stable\")\n\n disp(cards)\n" ]
19
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import sys\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\ndef m():\n A=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\n k(A,0,n-1)\n print(s(A)+'table')\n print('\\n'.join(f'{a} {b}'for a,b,_ in A))\nif'__main__'==__name__: n=int(input());m()\n" ]
8
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(a,p,r):\n \n i=p-1\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n\n\nr=int(input())\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n\n\nr=int(input())\na=[list(input().split()) for _ in range(r)]\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n\n\nr=int(input())\na=[list(input().split()) for _ in range(r)]\nfor i in range(r):\n a[i][1]=int(a[i][1])\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n\n\nr=int(input())\na=[list(input().split()) for _ in range(r)]\nfor i in range(r):\n a[i][1]=int(a[i][1])\nimport copy\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n\n\nr=int(input())\na=[list(input().split()) for _ in range(r)]\nfor i in range(r):\n a[i][1]=int(a[i][1])\nimport copy\nb=copy.deepcopy(a)\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n\n\nr=int(input())\na=[list(input().split()) for _ in range(r)]\nfor i in range(r):\n a[i][1]=int(a[i][1])\nimport copy\nb=copy.deepcopy(a)\nb.sort(key=lambda x:x[1])\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n\n\nr=int(input())\na=[list(input().split()) for _ in range(r)]\nfor i in range(r):\n a[i][1]=int(a[i][1])\nimport copy\nb=copy.deepcopy(a)\nb.sort(key=lambda x:x[1])\nquicksort(a,0,r-1)\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n\n\nr=int(input())\na=[list(input().split()) for _ in range(r)]\nfor i in range(r):\n a[i][1]=int(a[i][1])\nimport copy\nb=copy.deepcopy(a)\nb.sort(key=lambda x:x[1])\nquicksort(a,0,r-1)\n\n\nif a==b:\n print(\"Stable\")\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n\n\nr=int(input())\na=[list(input().split()) for _ in range(r)]\nfor i in range(r):\n a[i][1]=int(a[i][1])\nimport copy\nb=copy.deepcopy(a)\nb.sort(key=lambda x:x[1])\nquicksort(a,0,r-1)\n\n\nif a==b:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "def partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n temp=a[i]\n a[i]=a[j]\n a[j]=temp\n temp=a[i+1]\n a[i+1]=a[r]\n a[r]=temp\n return i+1\n\ndef quicksort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quicksort(a,p,q-1)\n quicksort(a,q+1,r)\n\n\nr=int(input())\na=[list(input().split()) for _ in range(r)]\nfor i in range(r):\n a[i][1]=int(a[i][1])\nimport copy\nb=copy.deepcopy(a)\nb.sort(key=lambda x:x[1])\nquicksort(a,0,r-1)\n\n\nif a==b:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor i in range(r):\n print(a[i][0],a[i][1])\n" ]
19
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "c = 0\n", "n = int(input())\n\nc = 0\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n \n \n return a\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n \n \n return a\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n \n return a\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n\n\ndef partition(a, p, r):\n \n i = p-1\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p-1\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p-1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a = exchange(a, i, j)\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p-1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a = exchange(a, i, j)\n exchange(a, i+1, r)\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p-1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a = exchange(a, i, j)\n exchange(a, i+1, r)\n return i+1\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p-1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a = exchange(a, i, j)\n exchange(a, i+1, r)\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p-1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a = exchange(a, i, j)\n exchange(a, i+1, r)\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\nquicksort(data, 0, n-1)\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p-1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a = exchange(a, i, j)\n exchange(a, i+1, r)\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\nquicksort(data, 0, n-1)\n\nfor l in range(n-1):\n if int(data[l][1]) == int(data[l+1][1]):\n if int(data[l][2]) > int(data[l+1][2]):\n print('Not stable')\n c = 1\n break\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p-1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a = exchange(a, i, j)\n exchange(a, i+1, r)\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\nquicksort(data, 0, n-1)\n\nfor l in range(n-1):\n if int(data[l][1]) == int(data[l+1][1]):\n if int(data[l][2]) > int(data[l+1][2]):\n print('Not stable')\n c = 1\n break\n\nif c == 0:\n print('Stable')\n", "n = int(input())\ndata = list(input().split() for _ in range(n))\nc = 0\n\nfor k in range(n):\n data[k].append(str(k))\n\n\ndef exchange(a, i, j):\n tmp = a[i]\n a[i] = a[j]\n a[j] = tmp\n return a\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p-1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a = exchange(a, i, j)\n exchange(a, i+1, r)\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\nquicksort(data, 0, n-1)\n\nfor l in range(n-1):\n if int(data[l][1]) == int(data[l+1][1]):\n if int(data[l][2]) > int(data[l+1][2]):\n print('Not stable')\n c = 1\n break\n\nif c == 0:\n print('Stable')\n\nfor l in range(n):\n print(data[l][0], data[l][1])\n" ]
19
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "# Quick Sort\n\n\nA = []\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n \n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n \n \n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n \n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n \n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n \n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nINF = float('inf')\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nINF = float('inf')\n\n\ndef merge(left, mid, right):\n \n \n l = 0\n r = 0\n\n \n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nINF = float('inf')\n\n\ndef merge(left, mid, right):\n L = B[left:mid]+[('sentinel', INF)]\n \n l = 0\n r = 0\n\n \n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nINF = float('inf')\n\n\ndef merge(left, mid, right):\n L = B[left:mid]+[('sentinel', INF)]\n R = B[mid:right]+[('sentinel', INF)]\n l = 0\n r = 0\n\n \n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nINF = float('inf')\n\n\ndef merge(left, mid, right):\n L = B[left:mid]+[('sentinel', INF)]\n R = B[mid:right]+[('sentinel', INF)]\n l = 0\n r = 0\n\n for i in range(left, right):\n if L[l][1] <= R[r][1]:\n B[i] = L[l]\n l += 1\n else:\n B[i] = R[r]\n r += 1\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nINF = float('inf')\n\n\ndef merge(left, mid, right):\n L = B[left:mid]+[('sentinel', INF)]\n R = B[mid:right]+[('sentinel', INF)]\n l = 0\n r = 0\n\n for i in range(left, right):\n if L[l][1] <= R[r][1]:\n B[i] = L[l]\n l += 1\n else:\n B[i] = R[r]\n r += 1\n\n\ndef merge_sort(left, right):\n if left+1 < right:\n mid = (left+right)//2\n merge_sort(left, mid)\n merge_sort(mid, right)\n merge(left, mid, right)\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nINF = float('inf')\n\n\ndef merge(left, mid, right):\n L = B[left:mid]+[('sentinel', INF)]\n R = B[mid:right]+[('sentinel', INF)]\n l = 0\n r = 0\n\n for i in range(left, right):\n if L[l][1] <= R[r][1]:\n B[i] = L[l]\n l += 1\n else:\n B[i] = R[r]\n r += 1\n\n\ndef merge_sort(left, right):\n if left+1 < right:\n mid = (left+right)//2\n merge_sort(left, mid)\n merge_sort(mid, right)\n merge(left, mid, right)\n\n\nquick_sort(0, N-1)\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nINF = float('inf')\n\n\ndef merge(left, mid, right):\n L = B[left:mid]+[('sentinel', INF)]\n R = B[mid:right]+[('sentinel', INF)]\n l = 0\n r = 0\n\n for i in range(left, right):\n if L[l][1] <= R[r][1]:\n B[i] = L[l]\n l += 1\n else:\n B[i] = R[r]\n r += 1\n\n\ndef merge_sort(left, right):\n if left+1 < right:\n mid = (left+right)//2\n merge_sort(left, mid)\n merge_sort(mid, right)\n merge(left, mid, right)\n\n\nquick_sort(0, N-1)\nmerge_sort(0, N)\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nINF = float('inf')\n\n\ndef merge(left, mid, right):\n L = B[left:mid]+[('sentinel', INF)]\n R = B[mid:right]+[('sentinel', INF)]\n l = 0\n r = 0\n\n for i in range(left, right):\n if L[l][1] <= R[r][1]:\n B[i] = L[l]\n l += 1\n else:\n B[i] = R[r]\n r += 1\n\n\ndef merge_sort(left, right):\n if left+1 < right:\n mid = (left+right)//2\n merge_sort(left, mid)\n merge_sort(mid, right)\n merge(left, mid, right)\n\n\nquick_sort(0, N-1)\nmerge_sort(0, N)\n\nprint('Stable' if A == B else 'Not stable')\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n", "# Quick Sort\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, a = input().split()\n A.append((s, int(a)))\n\nB = [a for a in A]\n\n\ndef partition(p, r):\n i = p-1\n x = A[r][1]\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nINF = float('inf')\n\n\ndef merge(left, mid, right):\n L = B[left:mid]+[('sentinel', INF)]\n R = B[mid:right]+[('sentinel', INF)]\n l = 0\n r = 0\n\n for i in range(left, right):\n if L[l][1] <= R[r][1]:\n B[i] = L[l]\n l += 1\n else:\n B[i] = R[r]\n r += 1\n\n\ndef merge_sort(left, right):\n if left+1 < right:\n mid = (left+right)//2\n merge_sort(left, mid)\n merge_sort(mid, right)\n merge(left, mid, right)\n\n\nquick_sort(0, N-1)\nmerge_sort(0, N)\n\nprint('Stable' if A == B else 'Not stable')\nfor s, v in A:\n print(s, v)\n\n\n# print('Merge')\n# for s, v in B:\n# print(s, v)\n" ]
22
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n AA = [0] * N\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n AA = [0] * N\n for i in range(N):\n key, val = input().strip().split()\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n AA = [0] * N\n for i in range(N):\n key, val = input().strip().split()\n val = int(val)\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n AA = [0] * N\n for i in range(N):\n key, val = input().strip().split()\n val = int(val)\n AA[i] = (key, val)\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n AA = [0] * N\n for i in range(N):\n key, val = input().strip().split()\n val = int(val)\n AA[i] = (key, val)\n AA2 = AA[:]\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n AA = [0] * N\n for i in range(N):\n key, val = input().strip().split()\n val = int(val)\n AA[i] = (key, val)\n AA2 = AA[:]\n quicksort(AA, 0, len(AA) - 1)\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n AA = [0] * N\n for i in range(N):\n key, val = input().strip().split()\n val = int(val)\n AA[i] = (key, val)\n AA2 = AA[:]\n quicksort(AA, 0, len(AA) - 1)\n mergesort(AA2, 0, len(AA2))\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n AA = [0] * N\n for i in range(N):\n key, val = input().strip().split()\n val = int(val)\n AA[i] = (key, val)\n AA2 = AA[:]\n quicksort(AA, 0, len(AA) - 1)\n mergesort(AA2, 0, len(AA2))\n if all([a == a2 for a, a2 in zip(AA, AA2)]):\n print('Stable')\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n AA = [0] * N\n for i in range(N):\n key, val = input().strip().split()\n val = int(val)\n AA[i] = (key, val)\n AA2 = AA[:]\n quicksort(AA, 0, len(AA) - 1)\n mergesort(AA2, 0, len(AA2))\n if all([a == a2 for a, a2 in zip(AA, AA2)]):\n print('Stable')\n else:\n print('Not stable')\n", "def mergesort(A, s, e):\n if s + 1 < e:\n m = (e + s) // 2\n mergesort(A, s, m)\n mergesort(A, m, e)\n merge(A, s, m, e)\n\n\ndef merge(A, s, m, e):\n L = A[s:m] + [('*', 1E10)]\n R = A[m:e] + [('*', 1E10)]\n ix_l = ix_r = 0\n for ix in range(s, e):\n if L[ix_l][1] <= R[ix_r][1]:\n A[ix] = L[ix_l]\n ix_l += 1\n else:\n A[ix] = R[ix_r]\n ix_r += 1\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n i = partition(A, p, r)\n quicksort(A, p, i - 1)\n quicksort(A, i + 1, r)\n\n\nif __name__ == '__main__':\n N = int(input().strip())\n AA = [0] * N\n for i in range(N):\n key, val = input().strip().split()\n val = int(val)\n AA[i] = (key, val)\n AA2 = AA[:]\n quicksort(AA, 0, len(AA) - 1)\n mergesort(AA2, 0, len(AA2))\n if all([a == a2 for a, a2 in zip(AA, AA2)]):\n print('Stable')\n else:\n print('Not stable')\n for key, val in AA:\n print('{} {}'.format(key, val))\n" ]
22
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "#print(card)\n#print(card2)\n", "import copy\n\n\n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n \n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n \n \n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n \n \n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n \n \n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n \n\n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\n\n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\n\n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nN = int(input())\n\n\n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nN = int(input())\ncard = [input().split() for i in range(N)]\n\n\n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nN = int(input())\ncard = [input().split() for i in range(N)]\nfor i in range(N):\n card[i][1] = int(card[i][1])\n\n\n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nN = int(input())\ncard = [input().split() for i in range(N)]\nfor i in range(N):\n card[i][1] = int(card[i][1])\n\ncard2 = copy.deepcopy(card)\n\n\n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nN = int(input())\ncard = [input().split() for i in range(N)]\nfor i in range(N):\n card[i][1] = int(card[i][1])\n\ncard2 = copy.deepcopy(card)\ncard2.sort(key=lambda x: x[1])\n\n\n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nN = int(input())\ncard = [input().split() for i in range(N)]\nfor i in range(N):\n card[i][1] = int(card[i][1])\n\ncard2 = copy.deepcopy(card)\ncard2.sort(key=lambda x: x[1])\n\nquickSort(card,0,N-1)\n#print(card)\n#print(card2)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nN = int(input())\ncard = [input().split() for i in range(N)]\nfor i in range(N):\n card[i][1] = int(card[i][1])\n\ncard2 = copy.deepcopy(card)\ncard2.sort(key=lambda x: x[1])\n\nquickSort(card,0,N-1)\n#print(card)\n#print(card2)\n\nans = 'Stable'\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nN = int(input())\ncard = [input().split() for i in range(N)]\nfor i in range(N):\n card[i][1] = int(card[i][1])\n\ncard2 = copy.deepcopy(card)\ncard2.sort(key=lambda x: x[1])\n\nquickSort(card,0,N-1)\n#print(card)\n#print(card2)\n\nans = 'Stable'\nfor i in range(N):\n if card[i][0] != card2[i][0]:\n ans = 'Not stable'\n break\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nN = int(input())\ncard = [input().split() for i in range(N)]\nfor i in range(N):\n card[i][1] = int(card[i][1])\n\ncard2 = copy.deepcopy(card)\ncard2.sort(key=lambda x: x[1])\n\nquickSort(card,0,N-1)\n#print(card)\n#print(card2)\n\nans = 'Stable'\nfor i in range(N):\n if card[i][0] != card2[i][0]:\n ans = 'Not stable'\n break\nprint(ans)\n", "import copy\n\ndef partition(A,p,r):\n x = A[r][1]\n i = p-1\n # iは必ず1ずつ増える、jでx以下の要素を検出し、iの位置に持って行く\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nN = int(input())\ncard = [input().split() for i in range(N)]\nfor i in range(N):\n card[i][1] = int(card[i][1])\n\ncard2 = copy.deepcopy(card)\ncard2.sort(key=lambda x: x[1])\n\nquickSort(card,0,N-1)\n#print(card)\n#print(card2)\n\nans = 'Stable'\nfor i in range(N):\n if card[i][0] != card2[i][0]:\n ans = 'Not stable'\n break\nprint(ans)\nfor i in range(N):\n print(' '.join(map(str,card[i])))\n" ]
19
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def num(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num(A[r])\n i = p - 1\n for j in range(p, r):\n if num(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\ndef is_stable(A, B):\n C = B[:]\n for card in A:\n i = C.index(card)\n if i == 0:\n pass\n elif num(C[i - 1]) == num(card):\n return False\n del C[i]\n return True\n\nn = int(input())\nA = [input() for _ in range(n)]\nB = A[:]\n", "def num(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num(A[r])\n i = p - 1\n for j in range(p, r):\n if num(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\ndef is_stable(A, B):\n C = B[:]\n for card in A:\n i = C.index(card)\n if i == 0:\n pass\n elif num(C[i - 1]) == num(card):\n return False\n del C[i]\n return True\n\nn = int(input())\nA = [input() for _ in range(n)]\nB = A[:]\nquicksort(B, 0, n - 1)\n", "def num(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num(A[r])\n i = p - 1\n for j in range(p, r):\n if num(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\ndef is_stable(A, B):\n C = B[:]\n for card in A:\n i = C.index(card)\n if i == 0:\n pass\n elif num(C[i - 1]) == num(card):\n return False\n del C[i]\n return True\n\nn = int(input())\nA = [input() for _ in range(n)]\nB = A[:]\nquicksort(B, 0, n - 1)\n\nprint(\"Stable\" if is_stable(A, B) else \"Not stable\")\n", "def num(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num(A[r])\n i = p - 1\n for j in range(p, r):\n if num(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\ndef is_stable(A, B):\n C = B[:]\n for card in A:\n i = C.index(card)\n if i == 0:\n pass\n elif num(C[i - 1]) == num(card):\n return False\n del C[i]\n return True\n\nn = int(input())\nA = [input() for _ in range(n)]\nB = A[:]\nquicksort(B, 0, n - 1)\n\nprint(\"Stable\" if is_stable(A, B) else \"Not stable\")\nfor card in B:\n print(card)\n" ]
5
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n \n return i\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n \n return d\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n \n \n return d\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n \n return d\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n \n return d\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n \n A = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n N = int(input())\n A = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n N = int(input())\n A = []\n for i in range(N):\n a, v = input().split()\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n N = int(input())\n A = []\n for i in range(N):\n a, v = input().split()\n v = int(v)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n N = int(input())\n A = []\n for i in range(N):\n a, v = input().split()\n v = int(v)\n A.append((a, v))\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n N = int(input())\n A = []\n for i in range(N):\n a, v = input().split()\n v = int(v)\n A.append((a, v))\n\n sd = makedic(A, N)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n N = int(input())\n A = []\n for i in range(N):\n a, v = input().split()\n v = int(v)\n A.append((a, v))\n\n sd = makedic(A, N)\n quicksort(A, 0, N - 1)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n N = int(input())\n A = []\n for i in range(N):\n a, v = input().split()\n v = int(v)\n A.append((a, v))\n\n sd = makedic(A, N)\n quicksort(A, 0, N - 1)\n ed = makedic(A, N)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n N = int(input())\n A = []\n for i in range(N):\n a, v = input().split()\n v = int(v)\n A.append((a, v))\n\n sd = makedic(A, N)\n quicksort(A, 0, N - 1)\n ed = makedic(A, N)\n\n print('Stable' if sd == ed else 'Not stable')\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n N = int(input())\n A = []\n for i in range(N):\n a, v = input().split()\n v = int(v)\n A.append((a, v))\n\n sd = makedic(A, N)\n quicksort(A, 0, N - 1)\n ed = makedic(A, N)\n\n print('Stable' if sd == ed else 'Not stable')\n\n for l in A:\n print(l[0], l[1])\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r + 1):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n return i\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\ndef makedic(A, n):\n d = {}\n for i in range(n):\n key = A[i][1]\n value = A[i][0]\n if key in d:\n d[key] += value\n else:\n d[key] = value\n return d\n\ndef main():\n N = int(input())\n A = []\n for i in range(N):\n a, v = input().split()\n v = int(v)\n A.append((a, v))\n\n sd = makedic(A, N)\n quicksort(A, 0, N - 1)\n ed = makedic(A, N)\n\n print('Stable' if sd == ed else 'Not stable')\n\n for l in A:\n print(l[0], l[1])\n\nif __name__ == '__main__':\n main()\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "# coding: utf-8\n# Your code here!\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n \n \n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n \n \n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n \n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n \n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n \n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n \n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n \n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\ndef quick_sort(A, l, r):\n if l < r:\n #mid = (l + r) // 2\n mid = r\n pivot = A[mid][1]\n A[mid], A[r] = A[r], A[mid]\n i = 0\n for j in range(l, r):\n if A[j][1] <= pivot:\n A[l+i], A[j] = A[j], A[l+i]\n i += 1\n A[l+i], A[r] = A[r], A[l+i]\n\n quick_sort(A, l, l+i-1)\n quick_sort(A, l+i+1, r)\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\ndef quick_sort(A, l, r):\n if l < r:\n #mid = (l + r) // 2\n mid = r\n pivot = A[mid][1]\n A[mid], A[r] = A[r], A[mid]\n i = 0\n for j in range(l, r):\n if A[j][1] <= pivot:\n A[l+i], A[j] = A[j], A[l+i]\n i += 1\n A[l+i], A[r] = A[r], A[l+i]\n\n quick_sort(A, l, l+i-1)\n quick_sort(A, l+i+1, r)\n\nn = int(input())\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\ndef quick_sort(A, l, r):\n if l < r:\n #mid = (l + r) // 2\n mid = r\n pivot = A[mid][1]\n A[mid], A[r] = A[r], A[mid]\n i = 0\n for j in range(l, r):\n if A[j][1] <= pivot:\n A[l+i], A[j] = A[j], A[l+i]\n i += 1\n A[l+i], A[r] = A[r], A[l+i]\n\n quick_sort(A, l, l+i-1)\n quick_sort(A, l+i+1, r)\n\nn = int(input())\ncards = [input().split() for _ in range(n)]\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\ndef quick_sort(A, l, r):\n if l < r:\n #mid = (l + r) // 2\n mid = r\n pivot = A[mid][1]\n A[mid], A[r] = A[r], A[mid]\n i = 0\n for j in range(l, r):\n if A[j][1] <= pivot:\n A[l+i], A[j] = A[j], A[l+i]\n i += 1\n A[l+i], A[r] = A[r], A[l+i]\n\n quick_sort(A, l, l+i-1)\n quick_sort(A, l+i+1, r)\n\nn = int(input())\ncards = [input().split() for _ in range(n)]\n\nfor card in cards:\n card[1] = int(card[1])\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\ndef quick_sort(A, l, r):\n if l < r:\n #mid = (l + r) // 2\n mid = r\n pivot = A[mid][1]\n A[mid], A[r] = A[r], A[mid]\n i = 0\n for j in range(l, r):\n if A[j][1] <= pivot:\n A[l+i], A[j] = A[j], A[l+i]\n i += 1\n A[l+i], A[r] = A[r], A[l+i]\n\n quick_sort(A, l, l+i-1)\n quick_sort(A, l+i+1, r)\n\nn = int(input())\ncards = [input().split() for _ in range(n)]\n\nfor card in cards:\n card[1] = int(card[1])\n\nconfirm_cards = cards[:]\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\ndef quick_sort(A, l, r):\n if l < r:\n #mid = (l + r) // 2\n mid = r\n pivot = A[mid][1]\n A[mid], A[r] = A[r], A[mid]\n i = 0\n for j in range(l, r):\n if A[j][1] <= pivot:\n A[l+i], A[j] = A[j], A[l+i]\n i += 1\n A[l+i], A[r] = A[r], A[l+i]\n\n quick_sort(A, l, l+i-1)\n quick_sort(A, l+i+1, r)\n\nn = int(input())\ncards = [input().split() for _ in range(n)]\n\nfor card in cards:\n card[1] = int(card[1])\n\nconfirm_cards = cards[:]\n\nquick_sort(cards, 0, n - 1)\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\ndef quick_sort(A, l, r):\n if l < r:\n #mid = (l + r) // 2\n mid = r\n pivot = A[mid][1]\n A[mid], A[r] = A[r], A[mid]\n i = 0\n for j in range(l, r):\n if A[j][1] <= pivot:\n A[l+i], A[j] = A[j], A[l+i]\n i += 1\n A[l+i], A[r] = A[r], A[l+i]\n\n quick_sort(A, l, l+i-1)\n quick_sort(A, l+i+1, r)\n\nn = int(input())\ncards = [input().split() for _ in range(n)]\n\nfor card in cards:\n card[1] = int(card[1])\n\nconfirm_cards = cards[:]\n\nquick_sort(cards, 0, n - 1)\nmerge_sort(confirm_cards, 0, n)\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\ndef quick_sort(A, l, r):\n if l < r:\n #mid = (l + r) // 2\n mid = r\n pivot = A[mid][1]\n A[mid], A[r] = A[r], A[mid]\n i = 0\n for j in range(l, r):\n if A[j][1] <= pivot:\n A[l+i], A[j] = A[j], A[l+i]\n i += 1\n A[l+i], A[r] = A[r], A[l+i]\n\n quick_sort(A, l, l+i-1)\n quick_sort(A, l+i+1, r)\n\nn = int(input())\ncards = [input().split() for _ in range(n)]\n\nfor card in cards:\n card[1] = int(card[1])\n\nconfirm_cards = cards[:]\n\nquick_sort(cards, 0, n - 1)\nmerge_sort(confirm_cards, 0, n)\n\nif cards == confirm_cards:\n print('Stable')\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\ndef quick_sort(A, l, r):\n if l < r:\n #mid = (l + r) // 2\n mid = r\n pivot = A[mid][1]\n A[mid], A[r] = A[r], A[mid]\n i = 0\n for j in range(l, r):\n if A[j][1] <= pivot:\n A[l+i], A[j] = A[j], A[l+i]\n i += 1\n A[l+i], A[r] = A[r], A[l+i]\n\n quick_sort(A, l, l+i-1)\n quick_sort(A, l+i+1, r)\n\nn = int(input())\ncards = [input().split() for _ in range(n)]\n\nfor card in cards:\n card[1] = int(card[1])\n\nconfirm_cards = cards[:]\n\nquick_sort(cards, 0, n - 1)\nmerge_sort(confirm_cards, 0, n)\n\nif cards == confirm_cards:\n print('Stable')\nelse:\n print('Not stable')\n\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n", "# coding: utf-8\n# Your code here!\nINF = 10**10\n\ndef merge(A, l, mid, r):\n a1 = A[l:mid] + [[None, INF]]\n a2 = A[mid:r] + [[None, INF]]\n i = j = 0\n for k in range(l, r):\n if a1[i][1] <= a2[j][1]:\n A[k] = a1[i]\n i += 1\n else:\n A[k] = a2[j]\n j += 1\n\ndef merge_sort(A, l, r):\n if l + 1 >= r:\n return\n mid = (l + r) // 2\n\n merge_sort(A, l, mid)\n merge_sort(A, mid, r)\n\n merge(A, l, mid, r)\n\n\ndef quick_sort(A, l, r):\n if l < r:\n #mid = (l + r) // 2\n mid = r\n pivot = A[mid][1]\n A[mid], A[r] = A[r], A[mid]\n i = 0\n for j in range(l, r):\n if A[j][1] <= pivot:\n A[l+i], A[j] = A[j], A[l+i]\n i += 1\n A[l+i], A[r] = A[r], A[l+i]\n\n quick_sort(A, l, l+i-1)\n quick_sort(A, l+i+1, r)\n\nn = int(input())\ncards = [input().split() for _ in range(n)]\n\nfor card in cards:\n card[1] = int(card[1])\n\nconfirm_cards = cards[:]\n\nquick_sort(cards, 0, n - 1)\nmerge_sort(confirm_cards, 0, n)\n\nif cards == confirm_cards:\n print('Stable')\nelse:\n print('Not stable')\n\nfor card in cards:\n print(*card)\n\n#print('-----')\n#for card in confirm_cards:\n# print(*card)\n" ]
22
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "cL = []\n", "n = int(input())\ncL = []\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n \n \n i = l\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n \n i = l\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n \n i+=1\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n \n i+=1\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n \n lI+=1\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n while rI < len(r):\n \n rI+=1\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n while rI < len(r):\n newL.append(r[rI])\n rI+=1\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n while rI < len(r):\n newL.append(r[rI])\n rI+=1\n return newL\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n while rI < len(r):\n newL.append(r[rI])\n rI+=1\n return newL\n\ndef mergeSort(curL):\n if len(curL) <= 1:\n return curL\n else:\n mid = len(curL)//2\n left = mergeSort(curL[:mid])\n right = mergeSort(curL[mid:])\n return merge(left, right)\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n while rI < len(r):\n newL.append(r[rI])\n rI+=1\n return newL\n\ndef mergeSort(curL):\n if len(curL) <= 1:\n return curL\n else:\n mid = len(curL)//2\n left = mergeSort(curL[:mid])\n right = mergeSort(curL[mid:])\n return merge(left, right)\n\nmergeSorted = mergeSort(cL)\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n while rI < len(r):\n newL.append(r[rI])\n rI+=1\n return newL\n\ndef mergeSort(curL):\n if len(curL) <= 1:\n return curL\n else:\n mid = len(curL)//2\n left = mergeSort(curL[:mid])\n right = mergeSort(curL[mid:])\n return merge(left, right)\n\nmergeSorted = mergeSort(cL)\nquickSort(cL, 0, len(cL)-1)\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n while rI < len(r):\n newL.append(r[rI])\n rI+=1\n return newL\n\ndef mergeSort(curL):\n if len(curL) <= 1:\n return curL\n else:\n mid = len(curL)//2\n left = mergeSort(curL[:mid])\n right = mergeSort(curL[mid:])\n return merge(left, right)\n\nmergeSorted = mergeSort(cL)\nquickSort(cL, 0, len(cL)-1)\nquickSorted = cL\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n while rI < len(r):\n newL.append(r[rI])\n rI+=1\n return newL\n\ndef mergeSort(curL):\n if len(curL) <= 1:\n return curL\n else:\n mid = len(curL)//2\n left = mergeSort(curL[:mid])\n right = mergeSort(curL[mid:])\n return merge(left, right)\n\nmergeSorted = mergeSort(cL)\nquickSort(cL, 0, len(cL)-1)\nquickSorted = cL\nif mergeSorted == quickSorted:\n print('Stable')\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n while rI < len(r):\n newL.append(r[rI])\n rI+=1\n return newL\n\ndef mergeSort(curL):\n if len(curL) <= 1:\n return curL\n else:\n mid = len(curL)//2\n left = mergeSort(curL[:mid])\n right = mergeSort(curL[mid:])\n return merge(left, right)\n\nmergeSorted = mergeSort(cL)\nquickSort(cL, 0, len(cL)-1)\nquickSorted = cL\nif mergeSorted == quickSorted:\n print('Stable')\nelse:\n print('Not stable')\n", "n = int(input())\ncL = []\nfor i in range(n):\n inputS = input()\n inputL = inputS.split()\n cL.append([inputS, int(inputL[1])])\n\ndef partition(A, l, r):\n pivot = A[r][1]\n minVI = l-1\n i = l\n while i < r:\n if A[i][1] <= pivot:\n minVI+=1\n A[i], A[minVI] = A[minVI], A[i]\n i+=1\n A[minVI+1], A[i] = A[i], A[minVI+1]\n return minVI+1\n\ndef quickSort(A, l, r):\n if l < r:\n pivotI = partition(A, l, r)\n quickSort(A, l, pivotI-1)\n quickSort(A, pivotI+1, r)\n\ndef merge(l, r):\n lI = 0\n rI = 0\n newL = []\n while lI < len(l) and rI < len(r):\n if l[lI][1] <= r[rI][1]:\n newL.append(l[lI])\n lI+=1\n else:\n newL.append(r[rI])\n rI+=1\n while lI < len(l):\n newL.append(l[lI])\n lI+=1\n while rI < len(r):\n newL.append(r[rI])\n rI+=1\n return newL\n\ndef mergeSort(curL):\n if len(curL) <= 1:\n return curL\n else:\n mid = len(curL)//2\n left = mergeSort(curL[:mid])\n right = mergeSort(curL[mid:])\n return merge(left, right)\n\nmergeSorted = mergeSort(cL)\nquickSort(cL, 0, len(cL)-1)\nquickSorted = cL\nif mergeSorted == quickSorted:\n print('Stable')\nelse:\n print('Not stable')\nfor v in quickSorted:\n print(v[0])\n" ]
30
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n", "def partition(A,p,r):\n x = A[r][1]\n \n \nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n \n \nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n \n \nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n \n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n \n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n \nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n \n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nA = []\nfor _ in range(n):\n mark,num = input().split()\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nA = []\nfor _ in range(n):\n mark,num = input().split()\n num = int(num)\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nA = []\nfor _ in range(n):\n mark,num = input().split()\n num = int(num)\n A.append([mark,num])\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nA = []\nfor _ in range(n):\n mark,num = input().split()\n num = int(num)\n A.append([mark,num])\nquick = checkstable()\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nA = []\nfor _ in range(n):\n mark,num = input().split()\n num = int(num)\n A.append([mark,num])\nquick = checkstable()\nquick.storecards(A)\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nA = []\nfor _ in range(n):\n mark,num = input().split()\n num = int(num)\n A.append([mark,num])\nquick = checkstable()\nquick.storecards(A)\n\nquicksort(A,0,n - 1)\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nA = []\nfor _ in range(n):\n mark,num = input().split()\n num = int(num)\n A.append([mark,num])\nquick = checkstable()\nquick.storecards(A)\n\nquicksort(A,0,n - 1)\nstable = quick.isstable(A)\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nA = []\nfor _ in range(n):\n mark,num = input().split()\n num = int(num)\n A.append([mark,num])\nquick = checkstable()\nquick.storecards(A)\n\nquicksort(A,0,n - 1)\nstable = quick.isstable(A)\nprint(stable)\n", "def partition(A,p,r):\n x = A[r][1]\n i = p - 1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j], A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nclass checkstable:\n def __init__(self):\n self.d = {}\n def storecards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]] = [(A[i][0])]\n\n def isstable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0) != A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nA = []\nfor _ in range(n):\n mark,num = input().split()\n num = int(num)\n A.append([mark,num])\nquick = checkstable()\nquick.storecards(A)\n\nquicksort(A,0,n - 1)\nstable = quick.isstable(A)\nprint(stable)\nfor i in range(n):\n print(*A[i])\n" ]
22
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n", "import copy\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n \n \n return i\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n \n return i\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef correct_same_num_suits(l, num):\n suits = []\n \n \nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef correct_same_num_suits(l, num):\n suits = []\n for card in l:\n if num == card[1]:\n suits.append(card[0])\n \n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef correct_same_num_suits(l, num):\n suits = []\n for card in l:\n if num == card[1]:\n suits.append(card[0])\n return suits\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef correct_same_num_suits(l, num):\n suits = []\n for card in l:\n if num == card[1]:\n suits.append(card[0])\n return suits\n\ndef is_stable():\n idx = 0\n \n \nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef correct_same_num_suits(l, num):\n suits = []\n for card in l:\n if num == card[1]:\n suits.append(card[0])\n return suits\n\ndef is_stable():\n idx = 0\n while idx < N-1:\n idx_incr_flg = True\n if A[idx][1] == A[idx+1][1]:\n num = A[idx][1]\n sorted_suits = correct_same_num_suits(A, num)\n orig_suits = correct_same_num_suits(orig_list, num)\n if sorted_suits != orig_suits:\n return False\n idx += len(sorted_suits)\n idx_incr_flg = False\n if idx_incr_flg:\n idx += 1\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef correct_same_num_suits(l, num):\n suits = []\n for card in l:\n if num == card[1]:\n suits.append(card[0])\n return suits\n\ndef is_stable():\n idx = 0\n while idx < N-1:\n idx_incr_flg = True\n if A[idx][1] == A[idx+1][1]:\n num = A[idx][1]\n sorted_suits = correct_same_num_suits(A, num)\n orig_suits = correct_same_num_suits(orig_list, num)\n if sorted_suits != orig_suits:\n return False\n idx += len(sorted_suits)\n idx_incr_flg = False\n if idx_incr_flg:\n idx += 1\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n\nquick_sort(0, N-1)\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef correct_same_num_suits(l, num):\n suits = []\n for card in l:\n if num == card[1]:\n suits.append(card[0])\n return suits\n\ndef is_stable():\n idx = 0\n while idx < N-1:\n idx_incr_flg = True\n if A[idx][1] == A[idx+1][1]:\n num = A[idx][1]\n sorted_suits = correct_same_num_suits(A, num)\n orig_suits = correct_same_num_suits(orig_list, num)\n if sorted_suits != orig_suits:\n return False\n idx += len(sorted_suits)\n idx_incr_flg = False\n if idx_incr_flg:\n idx += 1\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef correct_same_num_suits(l, num):\n suits = []\n for card in l:\n if num == card[1]:\n suits.append(card[0])\n return suits\n\ndef is_stable():\n idx = 0\n while idx < N-1:\n idx_incr_flg = True\n if A[idx][1] == A[idx+1][1]:\n num = A[idx][1]\n sorted_suits = correct_same_num_suits(A, num)\n orig_suits = correct_same_num_suits(orig_list, num)\n if sorted_suits != orig_suits:\n return False\n idx += len(sorted_suits)\n idx_incr_flg = False\n if idx_incr_flg:\n idx += 1\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\nif is_stable:\n print(\"Stable\")\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef correct_same_num_suits(l, num):\n suits = []\n for card in l:\n if num == card[1]:\n suits.append(card[0])\n return suits\n\ndef is_stable():\n idx = 0\n while idx < N-1:\n idx_incr_flg = True\n if A[idx][1] == A[idx+1][1]:\n num = A[idx][1]\n sorted_suits = correct_same_num_suits(A, num)\n orig_suits = correct_same_num_suits(orig_list, num)\n if sorted_suits != orig_suits:\n return False\n idx += len(sorted_suits)\n idx_incr_flg = False\n if idx_incr_flg:\n idx += 1\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\nif is_stable:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef correct_same_num_suits(l, num):\n suits = []\n for card in l:\n if num == card[1]:\n suits.append(card[0])\n return suits\n\ndef is_stable():\n idx = 0\n while idx < N-1:\n idx_incr_flg = True\n if A[idx][1] == A[idx+1][1]:\n num = A[idx][1]\n sorted_suits = correct_same_num_suits(A, num)\n orig_suits = correct_same_num_suits(orig_list, num)\n if sorted_suits != orig_suits:\n return False\n idx += len(sorted_suits)\n idx_incr_flg = False\n if idx_incr_flg:\n idx += 1\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\nif is_stable:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor card in A:\n print(\"%s %d\" % (card[0], card[1]))\n" ]
17
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n \n i = p\n \n \n return i\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n \n \n return i\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n \n return i\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n \n A = []\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n _input = input().split(\" \")\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n _input = input().split(\" \")\n card.suit = _input[0]\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n _input = input().split(\" \")\n card.suit = _input[0]\n card.value = int(_input[1])\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n _input = input().split(\" \")\n card.suit = _input[0]\n card.value = int(_input[1])\n A.append(card)\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n _input = input().split(\" \")\n card.suit = _input[0]\n card.value = int(_input[1])\n A.append(card)\n\n ind = dict((e, i) for i, e in enumerate(A))\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n _input = input().split(\" \")\n card.suit = _input[0]\n card.value = int(_input[1])\n A.append(card)\n\n ind = dict((e, i) for i, e in enumerate(A))\n quickSort(A, 0, n-1)\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n _input = input().split(\" \")\n card.suit = _input[0]\n card.value = int(_input[1])\n A.append(card)\n\n ind = dict((e, i) for i, e in enumerate(A))\n quickSort(A, 0, n-1)\n\n for i in range(n - 1):\n if A[i].value == A[i + 1].value:\n if ind[A[i]] > ind[A[i + 1]]:\n print('Not stable')\n break\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n _input = input().split(\" \")\n card.suit = _input[0]\n card.value = int(_input[1])\n A.append(card)\n\n ind = dict((e, i) for i, e in enumerate(A))\n quickSort(A, 0, n-1)\n\n for i in range(n - 1):\n if A[i].value == A[i + 1].value:\n if ind[A[i]] > ind[A[i + 1]]:\n print('Not stable')\n break\n else:\n print('Stable')\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n _input = input().split(\" \")\n card.suit = _input[0]\n card.value = int(_input[1])\n A.append(card)\n\n ind = dict((e, i) for i, e in enumerate(A))\n quickSort(A, 0, n-1)\n\n for i in range(n - 1):\n if A[i].value == A[i + 1].value:\n if ind[A[i]] > ind[A[i + 1]]:\n print('Not stable')\n break\n else:\n print('Stable')\n\n for i in range(n):\n print(A[i].suit, A[i].value)\n", "class Card:\n def __init__(self):\n self.suit = ''\n self.value = 0\n\ndef partition(A, p, r):\n x = A[r].value\n i = p\n for j in range(p, r):\n if A[j].value <= x:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[i], A[r] = A[r], A[i]\n return i\n\ndef quickSort(A,p,r):\n if p < r:\n q = partition(A,p,r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n card = Card()\n _input = input().split(\" \")\n card.suit = _input[0]\n card.value = int(_input[1])\n A.append(card)\n\n ind = dict((e, i) for i, e in enumerate(A))\n quickSort(A, 0, n-1)\n\n for i in range(n - 1):\n if A[i].value == A[i + 1].value:\n if ind[A[i]] > ind[A[i + 1]]:\n print('Not stable')\n break\n else:\n print('Stable')\n\n for i in range(n):\n print(A[i].suit, A[i].value)\n\nif __name__ == \"__main__\":\n main()\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n \n \n i = 0\n j = 0\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n \n \n i = 0\n j = 0\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n \n \n i = 0\n j = 0\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n \n \n i = 0\n j = 0\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n \n \n i = 0\n j = 0\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n \n \n i = 0\n j = 0\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n \n \n i = 0\n j = 0\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n \n i = 0\n j = 0\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n R[n2] = ['last', 10**9 + 1]\n i = 0\n j = 0\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n R[n2] = ['last', 10**9 + 1]\n i = 0\n j = 0\n for k in range(left, right):\n if int(L[i][1]) <= int(R[j][1]):\n arr[k] = L[i]\n i += 1\n else:\n arr[k] = R[j]\n j += 1\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n R[n2] = ['last', 10**9 + 1]\n i = 0\n j = 0\n for k in range(left, right):\n if int(L[i][1]) <= int(R[j][1]):\n arr[k] = L[i]\n i += 1\n else:\n arr[k] = R[j]\n j += 1\ndef mergeSort(arr, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(arr, left, mid)\n mergeSort(arr, mid, right)\n merge(arr, left, mid, right)\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n R[n2] = ['last', 10**9 + 1]\n i = 0\n j = 0\n for k in range(left, right):\n if int(L[i][1]) <= int(R[j][1]):\n arr[k] = L[i]\n i += 1\n else:\n arr[k] = R[j]\n j += 1\ndef mergeSort(arr, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(arr, left, mid)\n mergeSort(arr, mid, right)\n merge(arr, left, mid, right)\nn = int(input())\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n R[n2] = ['last', 10**9 + 1]\n i = 0\n j = 0\n for k in range(left, right):\n if int(L[i][1]) <= int(R[j][1]):\n arr[k] = L[i]\n i += 1\n else:\n arr[k] = R[j]\n j += 1\ndef mergeSort(arr, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(arr, left, mid)\n mergeSort(arr, mid, right)\n merge(arr, left, mid, right)\nn = int(input())\na = [list(input().split()) for i in range(n)]\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n R[n2] = ['last', 10**9 + 1]\n i = 0\n j = 0\n for k in range(left, right):\n if int(L[i][1]) <= int(R[j][1]):\n arr[k] = L[i]\n i += 1\n else:\n arr[k] = R[j]\n j += 1\ndef mergeSort(arr, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(arr, left, mid)\n mergeSort(arr, mid, right)\n merge(arr, left, mid, right)\nn = int(input())\na = [list(input().split()) for i in range(n)]\nb = [i for i in a]\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n R[n2] = ['last', 10**9 + 1]\n i = 0\n j = 0\n for k in range(left, right):\n if int(L[i][1]) <= int(R[j][1]):\n arr[k] = L[i]\n i += 1\n else:\n arr[k] = R[j]\n j += 1\ndef mergeSort(arr, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(arr, left, mid)\n mergeSort(arr, mid, right)\n merge(arr, left, mid, right)\nn = int(input())\na = [list(input().split()) for i in range(n)]\nb = [i for i in a]\nmergeSort(b, 0, n)\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n R[n2] = ['last', 10**9 + 1]\n i = 0\n j = 0\n for k in range(left, right):\n if int(L[i][1]) <= int(R[j][1]):\n arr[k] = L[i]\n i += 1\n else:\n arr[k] = R[j]\n j += 1\ndef mergeSort(arr, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(arr, left, mid)\n mergeSort(arr, mid, right)\n merge(arr, left, mid, right)\nn = int(input())\na = [list(input().split()) for i in range(n)]\nb = [i for i in a]\nmergeSort(b, 0, n)\nquickSort(a, 0, n - 1)\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n R[n2] = ['last', 10**9 + 1]\n i = 0\n j = 0\n for k in range(left, right):\n if int(L[i][1]) <= int(R[j][1]):\n arr[k] = L[i]\n i += 1\n else:\n arr[k] = R[j]\n j += 1\ndef mergeSort(arr, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(arr, left, mid)\n mergeSort(arr, mid, right)\n merge(arr, left, mid, right)\nn = int(input())\na = [list(input().split()) for i in range(n)]\nb = [i for i in a]\nmergeSort(b, 0, n)\nquickSort(a, 0, n - 1)\nprint('Stable' if a == b else 'Not stable')\n", "def partition(arr, p, r):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\ndef quickSort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quickSort(arr, p, q - 1)\n quickSort(arr, q + 1, r)\ndef merge(arr, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = [i for i in range(n1 + 1)]\n R = [i for i in range(n2 + 1)]\n for i in range(n1):\n L[i] = arr[left + i]\n for i in range(n2):\n R[i] = arr[mid + i]\n L[n1] = ['last', 10**9 + 1]\n R[n2] = ['last', 10**9 + 1]\n i = 0\n j = 0\n for k in range(left, right):\n if int(L[i][1]) <= int(R[j][1]):\n arr[k] = L[i]\n i += 1\n else:\n arr[k] = R[j]\n j += 1\ndef mergeSort(arr, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(arr, left, mid)\n mergeSort(arr, mid, right)\n merge(arr, left, mid, right)\nn = int(input())\na = [list(input().split()) for i in range(n)]\nb = [i for i in a]\nmergeSort(b, 0, n)\nquickSort(a, 0, n - 1)\nprint('Stable' if a == b else 'Not stable')\nfor i in a:\n print(' '.join(i))\n" ]
25
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "a = []\nb = {}\n\n\nok = 1\n", "a = []\nb = {}\nn = int(input())\n\n\nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n \n \nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n \n\nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\n\n\nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\n\nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\ndef partition(a, left, right):\n standard = a[right][1]\n \n \nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\ndef partition(a, left, right):\n standard = a[right][1]\n cnt = left\n \n \nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\ndef partition(a, left, right):\n standard = a[right][1]\n cnt = left\n for i in range(left, right):\n if a[i][1] <= standard:\n a[cnt],a[i] = a[i], a[cnt]\n cnt += 1\n \n \nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\ndef partition(a, left, right):\n standard = a[right][1]\n cnt = left\n for i in range(left, right):\n if a[i][1] <= standard:\n a[cnt],a[i] = a[i], a[cnt]\n cnt += 1\n a[cnt],a[right] = a[right], a[cnt]\n \n\nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\ndef partition(a, left, right):\n standard = a[right][1]\n cnt = left\n for i in range(left, right):\n if a[i][1] <= standard:\n a[cnt],a[i] = a[i], a[cnt]\n cnt += 1\n a[cnt],a[right] = a[right], a[cnt]\n return cnt\n\n\nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\ndef partition(a, left, right):\n standard = a[right][1]\n cnt = left\n for i in range(left, right):\n if a[i][1] <= standard:\n a[cnt],a[i] = a[i], a[cnt]\n cnt += 1\n a[cnt],a[right] = a[right], a[cnt]\n return cnt\n\ndef quickSort(a, left = 0, right = len(a) - 1):\n if 1 <= right - left:\n cnt_ = partition(a, left, right)\n quickSort(a,left, cnt_ - 1)\n quickSort(a,cnt_ + 1, right)\n\n\nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\ndef partition(a, left, right):\n standard = a[right][1]\n cnt = left\n for i in range(left, right):\n if a[i][1] <= standard:\n a[cnt],a[i] = a[i], a[cnt]\n cnt += 1\n a[cnt],a[right] = a[right], a[cnt]\n return cnt\n\ndef quickSort(a, left = 0, right = len(a) - 1):\n if 1 <= right - left:\n cnt_ = partition(a, left, right)\n quickSort(a,left, cnt_ - 1)\n quickSort(a,cnt_ + 1, right)\n\nquickSort(a, 0 , len(a)-1)\n\nok = 1\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\ndef partition(a, left, right):\n standard = a[right][1]\n cnt = left\n for i in range(left, right):\n if a[i][1] <= standard:\n a[cnt],a[i] = a[i], a[cnt]\n cnt += 1\n a[cnt],a[right] = a[right], a[cnt]\n return cnt\n\ndef quickSort(a, left = 0, right = len(a) - 1):\n if 1 <= right - left:\n cnt_ = partition(a, left, right)\n quickSort(a,left, cnt_ - 1)\n quickSort(a,cnt_ + 1, right)\n\nquickSort(a, 0 , len(a)-1)\n\nok = 1\nfor s, i in a:\n if b[i]() != s:\n ok = 0\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\ndef partition(a, left, right):\n standard = a[right][1]\n cnt = left\n for i in range(left, right):\n if a[i][1] <= standard:\n a[cnt],a[i] = a[i], a[cnt]\n cnt += 1\n a[cnt],a[right] = a[right], a[cnt]\n return cnt\n\ndef quickSort(a, left = 0, right = len(a) - 1):\n if 1 <= right - left:\n cnt_ = partition(a, left, right)\n quickSort(a,left, cnt_ - 1)\n quickSort(a,cnt_ + 1, right)\n\nquickSort(a, 0 , len(a)-1)\n\nok = 1\nfor s, i in a:\n if b[i]() != s:\n ok = 0\nprint(['Not stable','Stable'][ok])\n", "a = []\nb = {}\nn = int(input())\nfor _ in range(n):\n s, i = input().split()\n a += [(s, int(i))]\n b.setdefault(int(i), []).append(s)\nb = {val: iter(s).__next__ for val, s in b.items()}\n\ndef partition(a, left, right):\n standard = a[right][1]\n cnt = left\n for i in range(left, right):\n if a[i][1] <= standard:\n a[cnt],a[i] = a[i], a[cnt]\n cnt += 1\n a[cnt],a[right] = a[right], a[cnt]\n return cnt\n\ndef quickSort(a, left = 0, right = len(a) - 1):\n if 1 <= right - left:\n cnt_ = partition(a, left, right)\n quickSort(a,left, cnt_ - 1)\n quickSort(a,cnt_ + 1, right)\n\nquickSort(a, 0 , len(a)-1)\n\nok = 1\nfor s, i in a:\n if b[i]() != s:\n ok = 0\nprint(['Not stable','Stable'][ok])\n\n\nfor i in range(n):\n print(*a[i])\n" ]
17
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import math\n", "import math\nimport string\n", "import math\nimport string\nimport itertools\n", "import math\nimport string\nimport itertools\nimport fractions\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef main():\n n = int(input())\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef main():\n n = int(input())\n cards = []\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef main():\n n = int(input())\n cards = []\n for i in range(n):\n c = input().split()\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef main():\n n = int(input())\n cards = []\n for i in range(n):\n c = input().split()\n cards.append((c[0], int(c[1])))\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef main():\n n = int(input())\n cards = []\n for i in range(n):\n c = input().split()\n cards.append((c[0], int(c[1])))\n\n stable_sorted_cards = sorted(cards, key=lambda x: x[1])\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef main():\n n = int(input())\n cards = []\n for i in range(n):\n c = input().split()\n cards.append((c[0], int(c[1])))\n\n stable_sorted_cards = sorted(cards, key=lambda x: x[1])\n quicksort(cards, 0, n-1)\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef main():\n n = int(input())\n cards = []\n for i in range(n):\n c = input().split()\n cards.append((c[0], int(c[1])))\n\n stable_sorted_cards = sorted(cards, key=lambda x: x[1])\n quicksort(cards, 0, n-1)\n\n if cards != stable_sorted_cards:\n print('Not stable')\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef main():\n n = int(input())\n cards = []\n for i in range(n):\n c = input().split()\n cards.append((c[0], int(c[1])))\n\n stable_sorted_cards = sorted(cards, key=lambda x: x[1])\n quicksort(cards, 0, n-1)\n\n if cards != stable_sorted_cards:\n print('Not stable')\n else:\n print('Stable')\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef main():\n n = int(input())\n cards = []\n for i in range(n):\n c = input().split()\n cards.append((c[0], int(c[1])))\n\n stable_sorted_cards = sorted(cards, key=lambda x: x[1])\n quicksort(cards, 0, n-1)\n\n if cards != stable_sorted_cards:\n print('Not stable')\n else:\n print('Stable')\n\n for card in cards:\n print(card[0], card[1])\n", "import math\nimport string\nimport itertools\nimport fractions\nimport heapq\nimport collections\nimport re\nimport array\nimport bisect\nimport sys\nimport random\nimport time\ninf = 10**9\n\n\ndef partition(a, p, r):\n # xがピボット\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef main():\n n = int(input())\n cards = []\n for i in range(n):\n c = input().split()\n cards.append((c[0], int(c[1])))\n\n stable_sorted_cards = sorted(cards, key=lambda x: x[1])\n quicksort(cards, 0, n-1)\n\n if cards != stable_sorted_cards:\n print('Not stable')\n else:\n print('Stable')\n\n for card in cards:\n print(card[0], card[1])\n\n\nif __name__ == '__main__':\n main()\n" ]
30
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "from sys import stdin\n", "from sys import stdin\nfrom collections import namedtuple\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n\n QuickSort(A, begin, left)\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n\n QuickSort(A, begin, left)\n QuickSort(A, left + 1, end)\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n\n QuickSort(A, begin, left)\n QuickSort(A, left + 1, end)\n\nn = int(stdin.readline())\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n\n QuickSort(A, begin, left)\n QuickSort(A, left + 1, end)\n\nn = int(stdin.readline())\nA = [None] * n\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n\n QuickSort(A, begin, left)\n QuickSort(A, left + 1, end)\n\nn = int(stdin.readline())\nA = [None] * n\n\nfor i in range(n):\n suit, value = stdin.readline().split()\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n\n QuickSort(A, begin, left)\n QuickSort(A, left + 1, end)\n\nn = int(stdin.readline())\nA = [None] * n\n\nfor i in range(n):\n suit, value = stdin.readline().split()\n A[i] = Card(suit, int(value), i)\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n\n QuickSort(A, begin, left)\n QuickSort(A, left + 1, end)\n\nn = int(stdin.readline())\nA = [None] * n\n\nfor i in range(n):\n suit, value = stdin.readline().split()\n A[i] = Card(suit, int(value), i)\n\nQuickSort(A, 0, n)\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n\n QuickSort(A, begin, left)\n QuickSort(A, left + 1, end)\n\nn = int(stdin.readline())\nA = [None] * n\n\nfor i in range(n):\n suit, value = stdin.readline().split()\n A[i] = Card(suit, int(value), i)\n\nQuickSort(A, 0, n)\n\nfor i in range(n - 1):\n if A[i].value == A[i + 1].value and A[i].init > A[i + 1].init:\n print('Not stable')\n break\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n\n QuickSort(A, begin, left)\n QuickSort(A, left + 1, end)\n\nn = int(stdin.readline())\nA = [None] * n\n\nfor i in range(n):\n suit, value = stdin.readline().split()\n A[i] = Card(suit, int(value), i)\n\nQuickSort(A, 0, n)\n\nfor i in range(n - 1):\n if A[i].value == A[i + 1].value and A[i].init > A[i + 1].init:\n print('Not stable')\n break\nelse:\n print('Stable')\n", "from sys import stdin\nfrom collections import namedtuple\n\nCard = namedtuple('Card', ['suit', 'value', 'init'])\n\ndef QuickSort(A, begin, end):\n if end - begin <= 1:\n return\n\n piv = A[end - 1].value\n left, right = begin, begin\n\n for i in range(begin, end - 1):\n if A[i].value <= piv:\n if i - left > 0:\n A[left], A[i] = A[i], A[left]\n left += 1\n\n A[left], A[end - 1] = A[end - 1], A[left]\n\n QuickSort(A, begin, left)\n QuickSort(A, left + 1, end)\n\nn = int(stdin.readline())\nA = [None] * n\n\nfor i in range(n):\n suit, value = stdin.readline().split()\n A[i] = Card(suit, int(value), i)\n\nQuickSort(A, 0, n)\n\nfor i in range(n - 1):\n if A[i].value == A[i + 1].value and A[i].init > A[i + 1].init:\n print('Not stable')\n break\nelse:\n print('Stable')\n\nfor a in A:\n print(a.suit, a.value)\n" ]
19
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A=[]\n", "def partition(A,p,r):\n \n i=p-1\n \n m=A[i+1]\n \n A[r]=m\n \n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n \n m=A[i+1]\n \n A[r]=m\n \n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n \n A[r]=m\n \n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n \n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\n\n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\nn=int(input())\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\nn=int(input())\nA=[]\nfor _ in range(n):\n card=input().split()\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\nn=int(input())\nA=[]\nfor _ in range(n):\n card=input().split()\n A.append([card[0],int(card[1])])\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\nn=int(input())\nA=[]\nfor _ in range(n):\n card=input().split()\n A.append([card[0],int(card[1])])\nAcopy=A.copy()\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\nn=int(input())\nA=[]\nfor _ in range(n):\n card=input().split()\n A.append([card[0],int(card[1])])\nAcopy=A.copy()\nquicksort(A,0,n-1)\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\nn=int(input())\nA=[]\nfor _ in range(n):\n card=input().split()\n A.append([card[0],int(card[1])])\nAcopy=A.copy()\nquicksort(A,0,n-1)\nans=\"Stable\"\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\nn=int(input())\nA=[]\nfor _ in range(n):\n card=input().split()\n A.append([card[0],int(card[1])])\nAcopy=A.copy()\nquicksort(A,0,n-1)\nans=\"Stable\"\nfor i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if Acopy.index(A[i+1])<Acopy.index(A[i]):\n ans=\"Not stable\"\n break\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\nn=int(input())\nA=[]\nfor _ in range(n):\n card=input().split()\n A.append([card[0],int(card[1])])\nAcopy=A.copy()\nquicksort(A,0,n-1)\nans=\"Stable\"\nfor i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if Acopy.index(A[i+1])<Acopy.index(A[i]):\n ans=\"Not stable\"\n break\nprint(ans)\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n m=A[i]\n A[i]=A[j]\n A[j]=m\n m=A[i+1]\n A[i+1]=A[r]\n A[r]=m\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\nn=int(input())\nA=[]\nfor _ in range(n):\n card=input().split()\n A.append([card[0],int(card[1])])\nAcopy=A.copy()\nquicksort(A,0,n-1)\nans=\"Stable\"\nfor i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if Acopy.index(A[i+1])<Acopy.index(A[i]):\n ans=\"Not stable\"\n break\nprint(ans)\nfor i in range(n):\n print(*A[i])\n" ]
17
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n \n i=p-1\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n \n j=-1\n \n \n return 1\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n \n \n return 1\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n \n return 1\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n \n j=-1\n\n \n return 1\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n \n return 1\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n \n return 1\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\nn=int(input())\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\nn=int(input())\noriginal_cards=[]\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\nn=int(input())\noriginal_cards=[]\nfor loop in range(n):\n original_cards.append(list(input().split()))\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\nn=int(input())\noriginal_cards=[]\nfor loop in range(n):\n original_cards.append(list(input().split()))\nfor card in original_cards:\n card[1]=int(card[1])\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\nn=int(input())\noriginal_cards=[]\nfor loop in range(n):\n original_cards.append(list(input().split()))\nfor card in original_cards:\n card[1]=int(card[1])\n\nsorted_cards=[card for card in original_cards]\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\nn=int(input())\noriginal_cards=[]\nfor loop in range(n):\n original_cards.append(list(input().split()))\nfor card in original_cards:\n card[1]=int(card[1])\n\nsorted_cards=[card for card in original_cards]\nquick_sort(sorted_cards,0,n)\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\nn=int(input())\noriginal_cards=[]\nfor loop in range(n):\n original_cards.append(list(input().split()))\nfor card in original_cards:\n card[1]=int(card[1])\n\nsorted_cards=[card for card in original_cards]\nquick_sort(sorted_cards,0,n)\n\nif(stability_judge(sorted_cards,original_cards)):\n print(\"Stable\")\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\nn=int(input())\noriginal_cards=[]\nfor loop in range(n):\n original_cards.append(list(input().split()))\nfor card in original_cards:\n card[1]=int(card[1])\n\nsorted_cards=[card for card in original_cards]\nquick_sort(sorted_cards,0,n)\n\nif(stability_judge(sorted_cards,original_cards)):\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\nn=int(input())\noriginal_cards=[]\nfor loop in range(n):\n original_cards.append(list(input().split()))\nfor card in original_cards:\n card[1]=int(card[1])\n\nsorted_cards=[card for card in original_cards]\nquick_sort(sorted_cards,0,n)\n\nif(stability_judge(sorted_cards,original_cards)):\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\n\nfor card in sorted_cards:\n card[1]=str(card[1])\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\nn=int(input())\noriginal_cards=[]\nfor loop in range(n):\n original_cards.append(list(input().split()))\nfor card in original_cards:\n card[1]=int(card[1])\n\nsorted_cards=[card for card in original_cards]\nquick_sort(sorted_cards,0,n)\n\nif(stability_judge(sorted_cards,original_cards)):\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\n\nfor card in sorted_cards:\n card[1]=str(card[1])\n print(\" \".join(card))\n", "def partition(A,p,r):#A[p]〜A[r-1]までのリストをpartitionする\n x=A[r-1][1]\n i=p-1\n for j in range(p,r-1):\n if(A[j][1] <= x):\n i+=1\n A[j],A[i]=A[i],A[j]\n A[i+1],A[r-1]=A[r-1],A[i+1]\n return i+1\n\n\ndef quick_sort(A,p,r):\n if( p < r-1 ):\n q=partition(A,p,r)\n quick_sort(A,p,q)\n quick_sort(A,q+1,r)\n\n\n\n\ndef stability_judge(sorted,original):\n n=len(sorted)\n j=-1\n x=sorted[0][1]\n for i in range(n):\n if(x!=sorted[i][1]):\n x=sorted[i][1]\n j=-1\n\n while(1):\n j+=1\n if(x==original[j][1]):\n if(sorted[i][0]!=original[j][0]):\n return 0\n else:\n break\n return 1\n\n\n\n\n\nn=int(input())\noriginal_cards=[]\nfor loop in range(n):\n original_cards.append(list(input().split()))\nfor card in original_cards:\n card[1]=int(card[1])\n\nsorted_cards=[card for card in original_cards]\nquick_sort(sorted_cards,0,n)\n\nif(stability_judge(sorted_cards,original_cards)):\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\n\n\nfor card in sorted_cards:\n card[1]=str(card[1])\n print(\" \".join(card))\n" ]
25
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n \n \n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n \n \n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n \n \n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n \n \n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n \n\n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n # パーティション分割し、基準値を取得\n q = partition(a, p, r)\n\n # 基準値を境目に更にパーティション分割を実施\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n # パーティション分割し、基準値を取得\n q = partition(a, p, r)\n\n # 基準値を境目に更にパーティション分割を実施\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\nn = int(input())\n\n\n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n # パーティション分割し、基準値を取得\n q = partition(a, p, r)\n\n # 基準値を境目に更にパーティション分割を実施\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\nn = int(input())\nli = [input().splitlines()[0] for x in range(n)]\n\n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n # パーティション分割し、基準値を取得\n q = partition(a, p, r)\n\n # 基準値を境目に更にパーティション分割を実施\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\nn = int(input())\nli = [input().splitlines()[0] for x in range(n)]\nstable = sorted(li, key=lambda x: int(x.split()[1]))\n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\n\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n # パーティション分割し、基準値を取得\n q = partition(a, p, r)\n\n # 基準値を境目に更にパーティション分割を実施\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\nn = int(input())\nli = [input().splitlines()[0] for x in range(n)]\nstable = sorted(li, key=lambda x: int(x.split()[1]))\n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\nquick_sort(li, 0, n - 1)\n# print(f\"{li=}\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n # パーティション分割し、基準値を取得\n q = partition(a, p, r)\n\n # 基準値を境目に更にパーティション分割を実施\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\nn = int(input())\nli = [input().splitlines()[0] for x in range(n)]\nstable = sorted(li, key=lambda x: int(x.split()[1]))\n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\nquick_sort(li, 0, n - 1)\n# print(f\"{li=}\")\nprint(\"S\" if stable == li else \"Not s\", end=\"\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n # パーティション分割し、基準値を取得\n q = partition(a, p, r)\n\n # 基準値を境目に更にパーティション分割を実施\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\nn = int(input())\nli = [input().splitlines()[0] for x in range(n)]\nstable = sorted(li, key=lambda x: int(x.split()[1]))\n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\nquick_sort(li, 0, n - 1)\n# print(f\"{li=}\")\nprint(\"S\" if stable == li else \"Not s\", end=\"\")\nprint(\"table\")\n", "def partition(a, p, r):\n \"\"\"パーティション分割\"\"\"\n x = int(a[r].split()[1])\n i = p - 1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n # パーティション分割し、基準値を取得\n q = partition(a, p, r)\n\n # 基準値を境目に更にパーティション分割を実施\n quick_sort(a, p, q-1)\n quick_sort(a, q+1, r)\n\n\nn = int(input())\nli = [input().splitlines()[0] for x in range(n)]\nstable = sorted(li, key=lambda x: int(x.split()[1]))\n# print(f\"{li=}\")\n# print(f\"{stable=}\")\n\nquick_sort(li, 0, n - 1)\n# print(f\"{li=}\")\nprint(\"S\" if stable == li else \"Not s\", end=\"\")\nprint(\"table\")\nfor i in li:\n print(i)\n" ]
16
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(a,b,c,p,r):\n x = a[r]\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nmark = [\"\"]*n\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nmark = [\"\"]*n\nnum = [0]*n\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nmark = [\"\"]*n\nnum = [0]*n\ncount = [i for i in range(n)]\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nmark = [\"\"]*n\nnum = [0]*n\ncount = [i for i in range(n)]\nfor i in range(n):\n mark[i],num[i] = input().split()\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nmark = [\"\"]*n\nnum = [0]*n\ncount = [i for i in range(n)]\nfor i in range(n):\n mark[i],num[i] = input().split()\nnum = list(map(int,num))\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nmark = [\"\"]*n\nnum = [0]*n\ncount = [i for i in range(n)]\nfor i in range(n):\n mark[i],num[i] = input().split()\nnum = list(map(int,num))\n\nquickSort(num,mark,count,0,n-1)\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nmark = [\"\"]*n\nnum = [0]*n\ncount = [i for i in range(n)]\nfor i in range(n):\n mark[i],num[i] = input().split()\nnum = list(map(int,num))\n\nquickSort(num,mark,count,0,n-1)\nprint(checkStable(num,count))\n", "def partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nmark = [\"\"]*n\nnum = [0]*n\ncount = [i for i in range(n)]\nfor i in range(n):\n mark[i],num[i] = input().split()\nnum = list(map(int,num))\n\nquickSort(num,mark,count,0,n-1)\nprint(checkStable(num,count))\nfor i in range(n):\n print(mark[i],num[i])\n", "\ndef partition(a,b,c,p,r):\n x = a[r]\n i = p - 1\n\n for j in range(p,r):\n if x >= a[j]:\n i += 1\n a[i],a[j] = a[j],a[i]\n b[i],b[j] = b[j],b[i]\n c[i],c[j] = c[j],c[i]\n\n a[i+1],a[r] = a[r],a[i+1]\n b[i+1],b[r] = b[r],b[i+1]\n c[i+1],c[r] = c[r],c[i+1]\n return i+1\n\ndef quickSort(a,b,c,p,r):\n if p < r:\n q = partition(a,b,c,p,r)\n quickSort(a,b,c,p,q-1)\n quickSort(a,b,c,q+1,r)\n\ndef checkStable(a,b):\n for i in range(1,len(a)):\n if a[i-1] == a[i]:\n if b[i-1] > b[i]:\n return \"Not stable\"\n return \"Stable\"\n\nn = int(input())\nmark = [\"\"]*n\nnum = [0]*n\ncount = [i for i in range(n)]\nfor i in range(n):\n mark[i],num[i] = input().split()\nnum = list(map(int,num))\n\nquickSort(num,mark,count,0,n-1)\nprint(checkStable(num,count))\nfor i in range(n):\n print(mark[i],num[i])\n" ]
21
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "s = []\n", "import copy\n\n\ns = []\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n \n \ns = []\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n \n \ns = []\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n \n \ns = []\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n \n\ns = []\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\n\ns = []\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\n\ns = []\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\n\nn = int(input())\ns = []\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\n\nn = int(input())\ns = []\nfor i in range(n):\n s.append(input().split())\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\n\nn = int(input())\ns = []\nfor i in range(n):\n s.append(input().split())\n\nl = copy.deepcopy(s)\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\n\nn = int(input())\ns = []\nfor i in range(n):\n s.append(input().split())\n\nl = copy.deepcopy(s)\nl.sort(key=lambda x: x[1])\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\n\nn = int(input())\ns = []\nfor i in range(n):\n s.append(input().split())\n\nl = copy.deepcopy(s)\nl.sort(key=lambda x: x[1])\n\nquickSort(s, 0, n - 1)\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\n\nn = int(input())\ns = []\nfor i in range(n):\n s.append(input().split())\n\nl = copy.deepcopy(s)\nl.sort(key=lambda x: x[1])\n\nquickSort(s, 0, n - 1)\n\nprint(\"Stable\" if s == l else \"Not stable\")\n", "import copy\n\n\ndef partition(a, p, r):\n x = int(a[r][1])\n i = p - 1\n for j in range(p, r):\n if int(a[j][1]) <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\n\nn = int(input())\ns = []\nfor i in range(n):\n s.append(input().split())\n\nl = copy.deepcopy(s)\nl.sort(key=lambda x: x[1])\n\nquickSort(s, 0, n - 1)\n\nprint(\"Stable\" if s == l else \"Not stable\")\nfor v in s:\n print(\" \".join(v))\n" ]
16
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import copy\n", "import copy\n\nINF = 10 ** 10\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n \n i += 1\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n \n j += 1\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n \n return 0\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n \n \n return 0\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n \n \n return 0\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n \n return 0\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\nA = [None for _ in range(n)]\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\nA = [None for _ in range(n)]\nfor i in range(n):\n a, b = input().split()\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\nA = [None for _ in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\nA = [None for _ in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\nA = [None for _ in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n - 1)\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\nA = [None for _ in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n - 1)\nmergeSort(B, 0, n)\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\nA = [None for _ in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n - 1)\nmergeSort(B, 0, n)\n\nif A == B:\n print(\"Stable\")\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\nA = [None for _ in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n - 1)\nmergeSort(B, 0, n)\n\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import copy\n\nINF = 10 ** 10\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count += 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\nA = [None for _ in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n - 1)\nmergeSort(B, 0, n)\n\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor i in range(n):\n print(\" \".join(map(str, A[i])))\n" ]
34
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n \n # left elements of seq <= q < right ones\n \n\nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n # left elements of seq <= q < right ones\n \n\nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n \n\nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n \nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n \nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\n\nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\n\nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n \n \nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n \n \nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n \n \nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n \n \nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n del cA[i]\n \n\nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n del cA[i]\n return True\n\nA = []\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n del cA[i]\n return True\n\nA = []\nr = int(input())\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n del cA[i]\n return True\n\nA = []\nr = int(input())\nfor _ in range(r):\n mark, num = input().split()\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n del cA[i]\n return True\n\nA = []\nr = int(input())\nfor _ in range(r):\n mark, num = input().split()\n A.append([mark, int(num)])\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n del cA[i]\n return True\n\nA = []\nr = int(input())\nfor _ in range(r):\n mark, num = input().split()\n A.append([mark, int(num)])\n\nB = list(A)\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n del cA[i]\n return True\n\nA = []\nr = int(input())\nfor _ in range(r):\n mark, num = input().split()\n A.append([mark, int(num)])\n\nB = list(A)\nquick_sort(A, 0, r)\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n del cA[i]\n return True\n\nA = []\nr = int(input())\nfor _ in range(r):\n mark, num = input().split()\n A.append([mark, int(num)])\n\nB = list(A)\nquick_sort(A, 0, r)\n\nif is_stable(A, B):\n print('Stable')\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n del cA[i]\n return True\n\nA = []\nr = int(input())\nfor _ in range(r):\n mark, num = input().split()\n A.append([mark, int(num)])\n\nB = list(A)\nquick_sort(A, 0, r)\n\nif is_stable(A, B):\n print('Stable')\nelse:\n print('Not stable')\n", "def partition(A, l, r):\n \"\"\" partition A[l:r] using q(A[r]) and return q's index\n \"\"\"\n q = A[r][1]\n sep_i = l # left elements of seq <= q < right ones\n for j in range(l, r):\n if A[j][1] <= q:\n # A[j] is left element\n\n # add A[j] to last of left, and replace first of right to last\n A[sep_i], A[j] = A[j], A[sep_i]\n sep_i += 1 # update separator\n else:\n # A[j] is right element\n pass\n\n A[sep_i], A[r] = A[r], A[sep_i]\n\n return sep_i\n\ndef quick_sort(A, l, r):\n if l < r:\n q = partition(A, l, r-1)\n quick_sort(A, l, q)\n quick_sort(A, q+1, r)\n\ndef is_stable(A, B):\n cA = list(A)\n for x in B:\n i = cA.index(x)\n if i == 0:\n pass\n elif cA[i - 1][1] == x[1]:\n return False\n del cA[i]\n return True\n\nA = []\nr = int(input())\nfor _ in range(r):\n mark, num = input().split()\n A.append([mark, int(num)])\n\nB = list(A)\nquick_sort(A, 0, r)\n\nif is_stable(A, B):\n print('Stable')\nelse:\n print('Not stable')\n\nfor x in A:\n print(*x)\n" ]
23
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(A, p, r):\n x = A[r][1]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\ndef main():\n \n A = []\n \n B = A[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n \n B = A[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for i in range(n):\n m, s = input().split()\n \n \n B = A[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for i in range(n):\n m, s = input().split()\n s = int(s)\n \n B = A[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for i in range(n):\n m, s = input().split()\n s = int(s)\n A.append([m, s])\n B = A[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for i in range(n):\n m, s = input().split()\n s = int(s)\n A.append([m, s])\n B = A[:]\n quicksort(B, 0, n-1)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for i in range(n):\n m, s = input().split()\n s = int(s)\n A.append([m, s])\n B = A[:]\n quicksort(B, 0, n-1)\n\n for i in range(n-1):\n if B[i][1] == B[i + 1][1]:\n if A.index(B[i]) > A.index(B[i + 1]):\n print(\"Not stable\")\n break\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for i in range(n):\n m, s = input().split()\n s = int(s)\n A.append([m, s])\n B = A[:]\n quicksort(B, 0, n-1)\n\n for i in range(n-1):\n if B[i][1] == B[i + 1][1]:\n if A.index(B[i]) > A.index(B[i + 1]):\n print(\"Not stable\")\n break\n else:\n print(\"Stable\")\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for i in range(n):\n m, s = input().split()\n s = int(s)\n A.append([m, s])\n B = A[:]\n quicksort(B, 0, n-1)\n\n for i in range(n-1):\n if B[i][1] == B[i + 1][1]:\n if A.index(B[i]) > A.index(B[i + 1]):\n print(\"Not stable\")\n break\n else:\n print(\"Stable\")\n\n for i in range(n):\n print(*B[i])\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for i in range(n):\n m, s = input().split()\n s = int(s)\n A.append([m, s])\n B = A[:]\n quicksort(B, 0, n-1)\n\n for i in range(n-1):\n if B[i][1] == B[i + 1][1]:\n if A.index(B[i]) > A.index(B[i + 1]):\n print(\"Not stable\")\n break\n else:\n print(\"Stable\")\n\n for i in range(n):\n print(*B[i])\n\n\nif __name__ == '__main__':\n main()\n" ]
17
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(a, p, r):\n \n i = p-1\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i+1\n a[i], a[j] = a[j], a[i]\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i+1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i+1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i+1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i+1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\nn = int(input())\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i+1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\nn = int(input())\ncards = [input() for i in range(n)]\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i+1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\nn = int(input())\ncards = [input() for i in range(n)]\nstable = sorted(cards, key=lambda x: int(x.split()[1]))\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i+1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\nn = int(input())\ncards = [input() for i in range(n)]\nstable = sorted(cards, key=lambda x: int(x.split()[1]))\nquick_sort(cards, 0, n - 1)\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i+1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\nn = int(input())\ncards = [input() for i in range(n)]\nstable = sorted(cards, key=lambda x: int(x.split()[1]))\nquick_sort(cards, 0, n - 1)\n\nprint(\"Stable\" if stable == cards else \"Not stable\")\n", "def partition(a, p, r):\n x = int(a[r].split()[1])\n i = p-1\n for j in range(p, r):\n if int(a[j].split()[1]) <= x:\n i = i+1\n a[i], a[j] = a[j], a[i]\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\nn = int(input())\ncards = [input() for i in range(n)]\nstable = sorted(cards, key=lambda x: int(x.split()[1]))\nquick_sort(cards, 0, n - 1)\n\nprint(\"Stable\" if stable == cards else \"Not stable\")\n\nfor card in cards:\n print(card)\n" ]
13
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nn = int(input())\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nn = int(input())\ndata = []\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nn = int(input())\ndata = []\nfor i in range(n):\n m,num = map(str,input().split())\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nn = int(input())\ndata = []\nfor i in range(n):\n m,num = map(str,input().split())\n data.append([m, int(num)])\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nn = int(input())\ndata = []\nfor i in range(n):\n m,num = map(str,input().split())\n data.append([m, int(num)])\ndata1 = data[:]\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nn = int(input())\ndata = []\nfor i in range(n):\n m,num = map(str,input().split())\n data.append([m, int(num)])\ndata1 = data[:]\n\nquickSort(data,0,n-1)\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nn = int(input())\ndata = []\nfor i in range(n):\n m,num = map(str,input().split())\n data.append([m, int(num)])\ndata1 = data[:]\n\nquickSort(data,0,n-1)\n\nfor i in range(n-1):\n if data[i][1] == data[i+1][1]:\n if data1.index(data[i]) > data1.index(data[i+1]):\n print(\"Not stable\")\n break\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nn = int(input())\ndata = []\nfor i in range(n):\n m,num = map(str,input().split())\n data.append([m, int(num)])\ndata1 = data[:]\n\nquickSort(data,0,n-1)\n\nfor i in range(n-1):\n if data[i][1] == data[i+1][1]:\n if data1.index(data[i]) > data1.index(data[i+1]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n", "def partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nn = int(input())\ndata = []\nfor i in range(n):\n m,num = map(str,input().split())\n data.append([m, int(num)])\ndata1 = data[:]\n\nquickSort(data,0,n-1)\n\nfor i in range(n-1):\n if data[i][1] == data[i+1][1]:\n if data1.index(data[i]) > data1.index(data[i+1]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n\nfor i in data:\n print(' '.join(str(d) for d in i))\n", "\ndef partition(A,p,r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i+=1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nn = int(input())\ndata = []\nfor i in range(n):\n m,num = map(str,input().split())\n data.append([m, int(num)])\ndata1 = data[:]\n\nquickSort(data,0,n-1)\n\nfor i in range(n-1):\n if data[i][1] == data[i+1][1]:\n if data1.index(data[i]) > data1.index(data[i+1]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n\nfor i in data:\n print(' '.join(str(d) for d in i))\n" ]
16
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n", "def partition(A,p,r):\n \n i = p-1\n \n \nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n \n \nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n \n \nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n \n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\ndef stable(A,Q):\n for i in range(1,len(Q)):\n if int(Q[i-1][1]) == int(Q[i][1]):\n x = A.index(Q[i-1])\n y = A.index(Q[i])\n if y<x:\n return 'Not stable'\n \n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\ndef stable(A,Q):\n for i in range(1,len(Q)):\n if int(Q[i-1][1]) == int(Q[i][1]):\n x = A.index(Q[i-1])\n y = A.index(Q[i])\n if y<x:\n return 'Not stable'\n return 'Stable'\n\n\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\ndef stable(A,Q):\n for i in range(1,len(Q)):\n if int(Q[i-1][1]) == int(Q[i][1]):\n x = A.index(Q[i-1])\n y = A.index(Q[i])\n if y<x:\n return 'Not stable'\n return 'Stable'\n\nn = int(input())\nA = []\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\ndef stable(A,Q):\n for i in range(1,len(Q)):\n if int(Q[i-1][1]) == int(Q[i][1]):\n x = A.index(Q[i-1])\n y = A.index(Q[i])\n if y<x:\n return 'Not stable'\n return 'Stable'\n\nn = int(input())\nA = []\nfor i in range(n):\n a = input().split()\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\ndef stable(A,Q):\n for i in range(1,len(Q)):\n if int(Q[i-1][1]) == int(Q[i][1]):\n x = A.index(Q[i-1])\n y = A.index(Q[i])\n if y<x:\n return 'Not stable'\n return 'Stable'\n\nn = int(input())\nA = []\nfor i in range(n):\n a = input().split()\n a[1]=int(a[1])\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\ndef stable(A,Q):\n for i in range(1,len(Q)):\n if int(Q[i-1][1]) == int(Q[i][1]):\n x = A.index(Q[i-1])\n y = A.index(Q[i])\n if y<x:\n return 'Not stable'\n return 'Stable'\n\nn = int(input())\nA = []\nfor i in range(n):\n a = input().split()\n a[1]=int(a[1])\n A.append(a)\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\ndef stable(A,Q):\n for i in range(1,len(Q)):\n if int(Q[i-1][1]) == int(Q[i][1]):\n x = A.index(Q[i-1])\n y = A.index(Q[i])\n if y<x:\n return 'Not stable'\n return 'Stable'\n\nn = int(input())\nA = []\nfor i in range(n):\n a = input().split()\n a[1]=int(a[1])\n A.append(a)\nQ = A.copy()\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\ndef stable(A,Q):\n for i in range(1,len(Q)):\n if int(Q[i-1][1]) == int(Q[i][1]):\n x = A.index(Q[i-1])\n y = A.index(Q[i])\n if y<x:\n return 'Not stable'\n return 'Stable'\n\nn = int(input())\nA = []\nfor i in range(n):\n a = input().split()\n a[1]=int(a[1])\n A.append(a)\nQ = A.copy()\nquicksort(Q, 0, n-1)\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\ndef stable(A,Q):\n for i in range(1,len(Q)):\n if int(Q[i-1][1]) == int(Q[i][1]):\n x = A.index(Q[i-1])\n y = A.index(Q[i])\n if y<x:\n return 'Not stable'\n return 'Stable'\n\nn = int(input())\nA = []\nfor i in range(n):\n a = input().split()\n a[1]=int(a[1])\n A.append(a)\nQ = A.copy()\nquicksort(Q, 0, n-1)\nprint(stable(A,Q))\n", "def partition(A,p,r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quicksort(A,p,r):\n if p<r:\n q = partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n\n\ndef stable(A,Q):\n for i in range(1,len(Q)):\n if int(Q[i-1][1]) == int(Q[i][1]):\n x = A.index(Q[i-1])\n y = A.index(Q[i])\n if y<x:\n return 'Not stable'\n return 'Stable'\n\nn = int(input())\nA = []\nfor i in range(n):\n a = input().split()\n a[1]=int(a[1])\n A.append(a)\nQ = A.copy()\nquicksort(Q, 0, n-1)\nprint(stable(A,Q))\nfor i in range(len(Q)):\n print(Q[i][0], Q[i][1])\n" ]
18
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n", "import copy\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n \n \n return i\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n \n return i\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nA = []\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n\nquick_sort(0, N-1)\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\nif is_stable:\n print(\"Stable\")\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\nif is_stable:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import copy\n\ndef partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = copy.deepcopy(A)\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\nif is_stable:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor card in A:\n print(\"%s %d\" % (card[0], card[1]))\n" ]
13
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n", "from collections import defaultdict\n\n\nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n \n \nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n \n \nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n \n \nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n \n\nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n \n \nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n \n \nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n \n t, m = b\n \n \nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n \n \nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n scanned_original[m].append(t)\n \n \nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n scanned_original[m].append(t)\n for k in scanned_ordered:\n if scanned_ordered.get(k, \"__NaN_1__\") != scanned_original.get(k, \"__NaN_2__\"):\n return False\n \n\nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n scanned_original[m].append(t)\n for k in scanned_ordered:\n if scanned_ordered.get(k, \"__NaN_1__\") != scanned_original.get(k, \"__NaN_2__\"):\n return False\n return True\n\n\nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n scanned_original[m].append(t)\n for k in scanned_ordered:\n if scanned_ordered.get(k, \"__NaN_1__\") != scanned_original.get(k, \"__NaN_2__\"):\n return False\n return True\n\n\nN = int(input())\nA = []\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n scanned_original[m].append(t)\n for k in scanned_ordered:\n if scanned_ordered.get(k, \"__NaN_1__\") != scanned_original.get(k, \"__NaN_2__\"):\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, n = input().split()\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n scanned_original[m].append(t)\n for k in scanned_ordered:\n if scanned_ordered.get(k, \"__NaN_1__\") != scanned_original.get(k, \"__NaN_2__\"):\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, n = input().split()\n A.append((s, int(n)))\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n scanned_original[m].append(t)\n for k in scanned_ordered:\n if scanned_ordered.get(k, \"__NaN_1__\") != scanned_original.get(k, \"__NaN_2__\"):\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, n = input().split()\n A.append((s, int(n)))\nsorted_A = A.copy()\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n scanned_original[m].append(t)\n for k in scanned_ordered:\n if scanned_ordered.get(k, \"__NaN_1__\") != scanned_original.get(k, \"__NaN_2__\"):\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, n = input().split()\n A.append((s, int(n)))\nsorted_A = A.copy()\nquick_sort(sorted_A, 0, N - 1)\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n scanned_original[m].append(t)\n for k in scanned_ordered:\n if scanned_ordered.get(k, \"__NaN_1__\") != scanned_original.get(k, \"__NaN_2__\"):\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, n = input().split()\n A.append((s, int(n)))\nsorted_A = A.copy()\nquick_sort(sorted_A, 0, N - 1)\nprint(\"Stable\" if is_stable(sorted_A, A) else \"Not stable\")\n", "from collections import defaultdict\n\n\ndef key(pair):\n _, n = pair\n return n\n\n\ndef partitionize(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if key(A[j]) <= key(x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partitionize(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\n\ndef is_stable(ordered, original):\n scanned_ordered = defaultdict(list)\n scanned_original = defaultdict(list)\n for a, b in zip(ordered, original):\n s, n = a\n scanned_ordered[n].append(s)\n t, m = b\n scanned_original[m].append(t)\n for k in scanned_ordered:\n if scanned_ordered.get(k, \"__NaN_1__\") != scanned_original.get(k, \"__NaN_2__\"):\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n s, n = input().split()\n A.append((s, int(n)))\nsorted_A = A.copy()\nquick_sort(sorted_A, 0, N - 1)\nprint(\"Stable\" if is_stable(sorted_A, A) else \"Not stable\")\nfor s, n in sorted_A:\n print(s, n)\n" ]
24
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n", "import copy\n\n\nA = []\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n \n A[r] = z\n \n\nA = []\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n \n\nA = []\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n return i + 1\n\n\nA = []\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\nA = []\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nn = int(input())\nA = []\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nn = int(input())\nA = []\nfor i in range(n):\n A.append(str(input()))\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nn = int(input())\nA = []\nfor i in range(n):\n A.append(str(input()))\n\nB = copy.deepcopy(A)\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nn = int(input())\nA = []\nfor i in range(n):\n A.append(str(input()))\n\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[2:]))\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nn = int(input())\nA = []\nfor i in range(n):\n A.append(str(input()))\n\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[2:]))\n\nquickSort(A, 0, n-1)\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nn = int(input())\nA = []\nfor i in range(n):\n A.append(str(input()))\n\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[2:]))\n\nquickSort(A, 0, n-1)\n\nif A == B:\n print('Stable')\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nn = int(input())\nA = []\nfor i in range(n):\n A.append(str(input()))\n\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[2:]))\n\nquickSort(A, 0, n-1)\n\nif A == B:\n print('Stable')\nelse:\n print('Not stable')\n", "import copy\n\ndef partition(A, p, r):\n x = A[r]\n i = p - 1\n for j in range(p, r):\n if int(A[j][2:]) <= int(x[2:]):\n i = i + 1\n y = A[i]\n A[i] = A[j]\n A[j] = y\n z = A[i+1]\n A[i+1] = A[r]\n A[r] = z\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\nn = int(input())\nA = []\nfor i in range(n):\n A.append(str(input()))\n\nB = copy.deepcopy(A)\nB.sort(key = lambda x: int(x[2:]))\n\nquickSort(A, 0, n-1)\n\nif A == B:\n print('Stable')\nelse:\n print('Not stable')\n\nfor i in range(n):\n print(A[i])\n" ]
15
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n", "def partition(p, r):\n i = p\n \n \n return i\n\n\nA = []\n", "def partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n \n return i\n\n\nA = []\n", "def partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\n\nA = []\n", "def partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\n\nA = []\n", "def partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = A[:]\n", "def partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = A[:]\n\nquick_sort(0, N-1)\n", "def partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = A[:]\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\n", "def partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = A[:]\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\nif is_stable:\n print(\"Stable\")\n", "def partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = A[:]\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\nif is_stable:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "def partition(p, r):\n i = p\n for j in range(p, r):\n if A[r][1] >= A[j][1]:\n A[i], A[j] = A[j], A[i]\n i += 1\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q-1)\n quick_sort(q+1, r)\n\ndef is_stable():\n for i in range(N-1):\n if A[i][1] == A[i+1][1]:\n small_idx, large_idx = 0, 0\n cnt = 0\n for j in range(N):\n if A[i] == orig_list[j]:\n small_idx = j\n cnt += 1\n elif A[i+1] == orig_list[j]:\n large_idx = j\n cnt += 1\n if cnt == 2:\n break\n if small_idx > large_idx:\n return False\n return True\n\n\nN = int(input())\nA = []\nfor _ in range(N):\n suit, num = input().split()\n num = int(num)\n A.append([suit, num])\norig_list = A[:]\n\nquick_sort(0, N-1)\n\nis_stable = is_stable()\nif is_stable:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor card in A:\n print(\"%s %d\" % (card[0], card[1]))\n" ]
12
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(arr, p, r):\n x = arr[r][1]\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n\nnum = int(input())\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n\nnum = int(input())\ncard_list = [input().split() for s in range(num)]\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n\nnum = int(input())\ncard_list = [input().split() for s in range(num)]\ncard_list = [(t[0], int(t[1])) for t in card_list]\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n\nnum = int(input())\ncard_list = [input().split() for s in range(num)]\ncard_list = [(t[0], int(t[1])) for t in card_list]\ncp_card_list = card_list[:]\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n\nnum = int(input())\ncard_list = [input().split() for s in range(num)]\ncard_list = [(t[0], int(t[1])) for t in card_list]\ncp_card_list = card_list[:]\n\nquick_sort(card_list, 0, len(card_list) - 1)\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n\nnum = int(input())\ncard_list = [input().split() for s in range(num)]\ncard_list = [(t[0], int(t[1])) for t in card_list]\ncp_card_list = card_list[:]\n\nquick_sort(card_list, 0, len(card_list) - 1)\n\nis_stable = True\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n\nnum = int(input())\ncard_list = [input().split() for s in range(num)]\ncard_list = [(t[0], int(t[1])) for t in card_list]\ncp_card_list = card_list[:]\n\nquick_sort(card_list, 0, len(card_list) - 1)\n\nis_stable = True\nfor i in range(len(card_list) - 1):\n if card_list[i][1] == card_list[i+1][1]:\n if cp_card_list.index(card_list[i]) > cp_card_list.index(card_list[i+1]):\n is_stable = False\n break\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n\nnum = int(input())\ncard_list = [input().split() for s in range(num)]\ncard_list = [(t[0], int(t[1])) for t in card_list]\ncp_card_list = card_list[:]\n\nquick_sort(card_list, 0, len(card_list) - 1)\n\nis_stable = True\nfor i in range(len(card_list) - 1):\n if card_list[i][1] == card_list[i+1][1]:\n if cp_card_list.index(card_list[i]) > cp_card_list.index(card_list[i+1]):\n is_stable = False\n break\n\nif is_stable:\n print(\"Stable\")\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n\nnum = int(input())\ncard_list = [input().split() for s in range(num)]\ncard_list = [(t[0], int(t[1])) for t in card_list]\ncp_card_list = card_list[:]\n\nquick_sort(card_list, 0, len(card_list) - 1)\n\nis_stable = True\nfor i in range(len(card_list) - 1):\n if card_list[i][1] == card_list[i+1][1]:\n if cp_card_list.index(card_list[i]) > cp_card_list.index(card_list[i+1]):\n is_stable = False\n break\n\nif is_stable:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "def partition(arr, p, r):\n x = arr[r][1]\n i = p - 1\n for j in range(p, r):\n if arr[j][1] <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n\n arr[i+1], arr[r] = arr[r], arr[i+1]\n return i+1\n\ndef quick_sort(arr, p, r):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q-1)\n quick_sort(arr, q+1, r)\n\nnum = int(input())\ncard_list = [input().split() for s in range(num)]\ncard_list = [(t[0], int(t[1])) for t in card_list]\ncp_card_list = card_list[:]\n\nquick_sort(card_list, 0, len(card_list) - 1)\n\nis_stable = True\nfor i in range(len(card_list) - 1):\n if card_list[i][1] == card_list[i+1][1]:\n if cp_card_list.index(card_list[i]) > cp_card_list.index(card_list[i+1]):\n is_stable = False\n break\n\nif is_stable:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor t in card_list:\n print(t[0], t[1])\n" ]
17
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n \n flag = 1\n\n \nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n \n\n flag = 1\n\n \nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n cards = list()\n\n \n flag = 1\n\n \nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n cards = list()\n\n for i in range(n):\n S, N = input().split()\n \n \n flag = 1\n\n \nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n cards = list()\n\n for i in range(n):\n S, N = input().split()\n c = card(S, N)\n \n\n flag = 1\n\n \nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n cards = list()\n\n for i in range(n):\n S, N = input().split()\n c = card(S, N)\n cards.append(c)\n\n \n flag = 1\n\n \nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n cards = list()\n\n for i in range(n):\n S, N = input().split()\n c = card(S, N)\n cards.append(c)\n\n reference = sorted(cards, key=lambda x: int(x.n))\n \n\n flag = 1\n\n \nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n cards = list()\n\n for i in range(n):\n S, N = input().split()\n c = card(S, N)\n cards.append(c)\n\n reference = sorted(cards, key=lambda x: int(x.n))\n QuickSort(cards, 0, len(cards) - 1)\n\n flag = 1\n\n \nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n cards = list()\n\n for i in range(n):\n S, N = input().split()\n c = card(S, N)\n cards.append(c)\n\n reference = sorted(cards, key=lambda x: int(x.n))\n QuickSort(cards, 0, len(cards) - 1)\n\n flag = 1\n\n for i in range(len(cards)):\n if cards[i].s != reference[i].s or cards[i].n != reference[i].n :\n flag = 0\n break;\n\n \nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n cards = list()\n\n for i in range(n):\n S, N = input().split()\n c = card(S, N)\n cards.append(c)\n\n reference = sorted(cards, key=lambda x: int(x.n))\n QuickSort(cards, 0, len(cards) - 1)\n\n flag = 1\n\n for i in range(len(cards)):\n if cards[i].s != reference[i].s or cards[i].n != reference[i].n :\n flag = 0\n break;\n\n if flag:\n print(\"Stable\")\n \n\nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n cards = list()\n\n for i in range(n):\n S, N = input().split()\n c = card(S, N)\n cards.append(c)\n\n reference = sorted(cards, key=lambda x: int(x.n))\n QuickSort(cards, 0, len(cards) - 1)\n\n flag = 1\n\n for i in range(len(cards)):\n if cards[i].s != reference[i].s or cards[i].n != reference[i].n :\n flag = 0\n break;\n\n if flag:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n\n \nMain()\n", "class card():\n def __init__(self, suit, number):\n self.s = suit\n self.n = number\n\ndef Partition(A, p, r):\n x = int(A[r].n)\n i = p - 1\n\n for j in range(p, r):\n if int(A[j].n) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n\n return i + 1\n\ndef QuickSort(A, p, r):\n if p < r:\n q = Partition(A, p, r)\n QuickSort(A, p, q - 1)\n QuickSort(A, q + 1, r)\n\ndef Main():\n\n n = int(input())\n cards = list()\n\n for i in range(n):\n S, N = input().split()\n c = card(S, N)\n cards.append(c)\n\n reference = sorted(cards, key=lambda x: int(x.n))\n QuickSort(cards, 0, len(cards) - 1)\n\n flag = 1\n\n for i in range(len(cards)):\n if cards[i].s != reference[i].s or cards[i].n != reference[i].n :\n flag = 0\n break;\n\n if flag:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n\n for i in range(len(cards)):\n print(\"{0} {1}\".format(cards[i].s, cards[i].n))\n\nMain()\n" ]
13
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import copy\n", "import copy\nimport sys\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n \n i = p\n \n # 最后交换key值\n \n return i\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n \n # 最后交换key值\n \n return i\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n \n return i\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n \n \n k = left\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n \n \n k = left\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n \n k = left\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n \n k += 1\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n \n i += 1\n \n k += 1\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n \n k += 1\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n \n j += 1\n k += 1\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == '__main__':\n n = int(input())\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == '__main__':\n n = int(input())\n numlist = []\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == '__main__':\n n = int(input())\n numlist = []\n for _ in range(n):\n datas = input().split(' ')\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == '__main__':\n n = int(input())\n numlist = []\n for _ in range(n):\n datas = input().split(' ')\n numlist.append((datas[0], int(datas[1])))\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == '__main__':\n n = int(input())\n numlist = []\n for _ in range(n):\n datas = input().split(' ')\n numlist.append((datas[0], int(datas[1])))\n list2 = copy.deepcopy(numlist)\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == '__main__':\n n = int(input())\n numlist = []\n for _ in range(n):\n datas = input().split(' ')\n numlist.append((datas[0], int(datas[1])))\n list2 = copy.deepcopy(numlist)\n quick_sort(numlist, 0, n - 1)\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == '__main__':\n n = int(input())\n numlist = []\n for _ in range(n):\n datas = input().split(' ')\n numlist.append((datas[0], int(datas[1])))\n list2 = copy.deepcopy(numlist)\n quick_sort(numlist, 0, n - 1)\n merge_sort(list2, 0, n)\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == '__main__':\n n = int(input())\n numlist = []\n for _ in range(n):\n datas = input().split(' ')\n numlist.append((datas[0], int(datas[1])))\n list2 = copy.deepcopy(numlist)\n quick_sort(numlist, 0, n - 1)\n merge_sort(list2, 0, n)\n if list2 == numlist:\n print('Stable')\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == '__main__':\n n = int(input())\n numlist = []\n for _ in range(n):\n datas = input().split(' ')\n numlist.append((datas[0], int(datas[1])))\n list2 = copy.deepcopy(numlist)\n quick_sort(numlist, 0, n - 1)\n merge_sort(list2, 0, n)\n if list2 == numlist:\n print('Stable')\n else:\n print('Not stable')\n", "import copy\nimport sys\n\ndef partition(A, p, r):\n key = A[r][1]\n i = p\n for j in range(p, r):\n # 把小的放在左边\n if A[j][1] <= key:\n A[i], A[j] = A[j], A[i]\n i += 1\n # 最后交换key值\n A[r], A[i] = A[i], A[r]\n return i\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid] + [(0, sys.maxsize)]\n R = A[mid: right] + [(0, sys.maxsize)]\n i = j = 0\n k = left\n while k < right:\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n k += 1\n\ndef merge_sort(A, left, right):\n if right - left > 1:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\n\nif __name__ == '__main__':\n n = int(input())\n numlist = []\n for _ in range(n):\n datas = input().split(' ')\n numlist.append((datas[0], int(datas[1])))\n list2 = copy.deepcopy(numlist)\n quick_sort(numlist, 0, n - 1)\n merge_sort(list2, 0, n)\n if list2 == numlist:\n print('Stable')\n else:\n print('Not stable')\n for c, num in numlist:\n print('%s %d' % (c, num))\n" ]
28
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n cards.append(tmp)\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n cards.append(tmp)\n a = cards[:]\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n cards.append(tmp)\n a = cards[:]\n b = cards[:]\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n cards.append(tmp)\n a = cards[:]\n b = cards[:]\n x = Quicksort()\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n cards.append(tmp)\n a = cards[:]\n b = cards[:]\n x = Quicksort()\n a = x.quicksort(a, 0, n-1)\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n cards.append(tmp)\n a = cards[:]\n b = cards[:]\n x = Quicksort()\n a = x.quicksort(a, 0, n-1)\n b = sorted(b, key=lambda i: i[1])\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n cards.append(tmp)\n a = cards[:]\n b = cards[:]\n x = Quicksort()\n a = x.quicksort(a, 0, n-1)\n b = sorted(b, key=lambda i: i[1])\n\n if a == b:\n print(\"Stable\")\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n cards.append(tmp)\n a = cards[:]\n b = cards[:]\n x = Quicksort()\n a = x.quicksort(a, 0, n-1)\n b = sorted(b, key=lambda i: i[1])\n\n if a == b:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n cards.append(tmp)\n a = cards[:]\n b = cards[:]\n x = Quicksort()\n a = x.quicksort(a, 0, n-1)\n b = sorted(b, key=lambda i: i[1])\n\n if a == b:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n\n for i in a:\n i[1] = str(i[1])\n", "class Quicksort:\n def quicksort(self, a, p, r):\n if p < r:\n q = self.partion(a, p, r)\n self.quicksort(a, p, q - 1)\n self.quicksort(a, q + 1, r)\n return(a)\n\n def partion(self, a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i+1)\n\ndef bubbleSort(a, n):\n flag = 1\n while flag == 1:\n flag = 0\n for j in range(n-1, 0, -1):\n if a[j][1] < a[j - 1][1]:\n a[j], a[j-1] = a[j-1], a[j]\n flag = 1\n return(a)\n\nif __name__ == '__main__':\n n = int(input().rstrip())\n cards = []\n for i in range(n):\n tmp = input().rstrip().split(\" \")\n tmp[1] = int(tmp[1])\n cards.append(tmp)\n a = cards[:]\n b = cards[:]\n x = Quicksort()\n a = x.quicksort(a, 0, n-1)\n b = sorted(b, key=lambda i: i[1])\n\n if a == b:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n\n for i in a:\n i[1] = str(i[1])\n print(\" \".join(i))\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "from sys import stdin\n", "from sys import stdin\nN=int(input())\n", "from sys import stdin\nN=int(input())\nnum_list=[]\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n \n i=p-1\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\ndef check(A):\n \n return 1\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\ndef check(A):\n for i in range(N-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:\n return 0\n return 1\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\ndef check(A):\n for i in range(N-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:\n return 0\n return 1\nquicksort(num_list,0,N-1)\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\ndef check(A):\n for i in range(N-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:\n return 0\n return 1\nquicksort(num_list,0,N-1)\nif check(num_list):\n print(\"Stable\")\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\ndef check(A):\n for i in range(N-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:\n return 0\n return 1\nquicksort(num_list,0,N-1)\nif check(num_list):\n print(\"Stable\")\nelse:print(\"Not stable\")\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\ndef check(A):\n for i in range(N-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:\n return 0\n return 1\nquicksort(num_list,0,N-1)\nif check(num_list):\n print(\"Stable\")\nelse:print(\"Not stable\")\nfor i in num_list:\n del i[2]\n", "from sys import stdin\nN=int(input())\nnum_list=[]\nfor i in range(N):\n line = list(stdin.readline().strip().split())\n num_list.append([line[0],int(line[1]),i])\ndef partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef quicksort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quicksort(A,p,q-1)\n quicksort(A,q+1,r)\ndef check(A):\n for i in range(N-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:\n return 0\n return 1\nquicksort(num_list,0,N-1)\nif check(num_list):\n print(\"Stable\")\nelse:print(\"Not stable\")\nfor i in num_list:\n del i[2]\n print(*i)\n" ]
19
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(hoge, p, r):\n \n i = p-1\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n same_nums.append(elem)\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n same_nums.append(elem)\n return 'Stable'\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n same_nums.append(elem)\n return 'Stable'\n\nif __name__ == '__main__':\n num = int(input())\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n same_nums.append(elem)\n return 'Stable'\n\nif __name__ == '__main__':\n num = int(input())\n hoge = list()\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n same_nums.append(elem)\n return 'Stable'\n\nif __name__ == '__main__':\n num = int(input())\n hoge = list()\n for _ in range(num):\n c, s = input().split()\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n same_nums.append(elem)\n return 'Stable'\n\nif __name__ == '__main__':\n num = int(input())\n hoge = list()\n for _ in range(num):\n c, s = input().split()\n hoge.append((c,s))\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n same_nums.append(elem)\n return 'Stable'\n\nif __name__ == '__main__':\n num = int(input())\n hoge = list()\n for _ in range(num):\n c, s = input().split()\n hoge.append((c,s))\n origin = hoge[:]\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n same_nums.append(elem)\n return 'Stable'\n\nif __name__ == '__main__':\n num = int(input())\n hoge = list()\n for _ in range(num):\n c, s = input().split()\n hoge.append((c,s))\n origin = hoge[:]\n qSort(hoge, 0, len(hoge)-1)\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n same_nums.append(elem)\n return 'Stable'\n\nif __name__ == '__main__':\n num = int(input())\n hoge = list()\n for _ in range(num):\n c, s = input().split()\n hoge.append((c,s))\n origin = hoge[:]\n qSort(hoge, 0, len(hoge)-1)\n print(isStable(origin, hoge))\n", "def partition(hoge, p, r):\n x = int(hoge[r][1])\n i = p-1\n for j in range(p, r):\n if int(hoge[j][1]) <= x:\n i += 1\n tmp = hoge[i]\n hoge[i] = hoge[j]\n hoge[j] = tmp\n tmp = hoge[i+1]\n hoge[i+1] = hoge[r]\n hoge[r] = tmp\n return i+1\n\ndef qSort(hoge, p, r):\n if p < r:\n q = partition(hoge, p, r)\n qSort(hoge, p, q-1)\n qSort(hoge, q+1, r)\n\ndef isStable(input_array, output_array):\n same_nums = list()\n now_num = 0\n for elem in output_array:\n if now_num != int(elem[1]):\n now_num = int(elem[1])\n same_nums = list()\n else:\n for c in same_nums:\n if input_array.index(c) > input_array.index(elem):\n return 'Not stable'\n same_nums.append(elem)\n return 'Stable'\n\nif __name__ == '__main__':\n num = int(input())\n hoge = list()\n for _ in range(num):\n c, s = input().split()\n hoge.append((c,s))\n origin = hoge[:]\n qSort(hoge, 0, len(hoge)-1)\n print(isStable(origin, hoge))\n print('\\n'.join(['{0[0]} {0[1]}'.format(x) for x in hoge]))\n" ]
24
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "from operator import attrgetter\nclass Card:\n def __init__(self, suit, number):\n self.suit = suit\n self.number = number\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j].number <= x.number:\n i = i + 1\n tp = A[j]\n A[j] = A[i]\n A[i] = tp\n else:\n continue\n A[r] = A[i+1]\n A[i+1] = x\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef main():\n \n A = []\n \n \nmain()\n", "from operator import attrgetter\nclass Card:\n def __init__(self, suit, number):\n self.suit = suit\n self.number = number\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j].number <= x.number:\n i = i + 1\n tp = A[j]\n A[j] = A[i]\n A[i] = tp\n else:\n continue\n A[r] = A[i+1]\n A[i+1] = x\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n \n \nmain()\n", "from operator import attrgetter\nclass Card:\n def __init__(self, suit, number):\n self.suit = suit\n self.number = number\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j].number <= x.number:\n i = i + 1\n tp = A[j]\n A[j] = A[i]\n A[i] = tp\n else:\n continue\n A[r] = A[i+1]\n A[i+1] = x\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n suit, num = map(str, input().split())\n \n \nmain()\n", "from operator import attrgetter\nclass Card:\n def __init__(self, suit, number):\n self.suit = suit\n self.number = number\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j].number <= x.number:\n i = i + 1\n tp = A[j]\n A[j] = A[i]\n A[i] = tp\n else:\n continue\n A[r] = A[i+1]\n A[i+1] = x\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n suit, num = map(str, input().split())\n A.append(Card(suit, int(num)))\n \n \nmain()\n", "from operator import attrgetter\nclass Card:\n def __init__(self, suit, number):\n self.suit = suit\n self.number = number\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j].number <= x.number:\n i = i + 1\n tp = A[j]\n A[j] = A[i]\n A[i] = tp\n else:\n continue\n A[r] = A[i+1]\n A[i+1] = x\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n suit, num = map(str, input().split())\n A.append(Card(suit, int(num)))\n comp = sorted(A, key=attrgetter('number'))\n \n \nmain()\n", "from operator import attrgetter\nclass Card:\n def __init__(self, suit, number):\n self.suit = suit\n self.number = number\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j].number <= x.number:\n i = i + 1\n tp = A[j]\n A[j] = A[i]\n A[i] = tp\n else:\n continue\n A[r] = A[i+1]\n A[i+1] = x\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n suit, num = map(str, input().split())\n A.append(Card(suit, int(num)))\n comp = sorted(A, key=attrgetter('number'))\n quickSort(A, 0, n-1)\n \n \nmain()\n", "from operator import attrgetter\nclass Card:\n def __init__(self, suit, number):\n self.suit = suit\n self.number = number\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j].number <= x.number:\n i = i + 1\n tp = A[j]\n A[j] = A[i]\n A[i] = tp\n else:\n continue\n A[r] = A[i+1]\n A[i+1] = x\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n suit, num = map(str, input().split())\n A.append(Card(suit, int(num)))\n comp = sorted(A, key=attrgetter('number'))\n quickSort(A, 0, n-1)\n if A == comp:\n print('Stable')\n \n \nmain()\n", "from operator import attrgetter\nclass Card:\n def __init__(self, suit, number):\n self.suit = suit\n self.number = number\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j].number <= x.number:\n i = i + 1\n tp = A[j]\n A[j] = A[i]\n A[i] = tp\n else:\n continue\n A[r] = A[i+1]\n A[i+1] = x\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n suit, num = map(str, input().split())\n A.append(Card(suit, int(num)))\n comp = sorted(A, key=attrgetter('number'))\n quickSort(A, 0, n-1)\n if A == comp:\n print('Stable')\n else:\n print('Not stable')\n \nmain()\n", "from operator import attrgetter\nclass Card:\n def __init__(self, suit, number):\n self.suit = suit\n self.number = number\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j].number <= x.number:\n i = i + 1\n tp = A[j]\n A[j] = A[i]\n A[i] = tp\n else:\n continue\n A[r] = A[i+1]\n A[i+1] = x\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n for _ in range(n):\n suit, num = map(str, input().split())\n A.append(Card(suit, int(num)))\n comp = sorted(A, key=attrgetter('number'))\n quickSort(A, 0, n-1)\n if A == comp:\n print('Stable')\n else:\n print('Not stable')\n for p in A:\n print(p.suit, p.number)\nmain()\n" ]
10
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\nD = {}\n\n\nok = 1\n", "import sys\n\n\nA = []\nD = {}\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n \n \nA = []\nD = {}\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n \n \nA = []\nD = {}\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n \n\nA = []\nD = {}\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\n\nA = []\nD = {}\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n \n return A\n\n\nA = []\nD = {}\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n \n \n return A\n\n\nA = []\nD = {}\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n \n return A\n\n\nA = []\nD = {}\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\n\nA = []\nD = {}\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\nN = int(input())\nA = []\nD = {}\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\nN = int(input())\nA = []\nD = {}\nfor i in range(N):\n v, d = sys.stdin.readline().split()\n \n \nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\nN = int(input())\nA = []\nD = {}\nfor i in range(N):\n v, d = sys.stdin.readline().split()\n A.append((v, int(d)))\n \n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\nN = int(input())\nA = []\nD = {}\nfor i in range(N):\n v, d = sys.stdin.readline().split()\n A.append((v, int(d)))\n D.setdefault(int(d), []).append(v)\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\nN = int(input())\nA = []\nD = {}\nfor i in range(N):\n v, d = sys.stdin.readline().split()\n A.append((v, int(d)))\n D.setdefault(int(d), []).append(v)\n\nout_A = quickSort(A,0,N-1)\n\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\nN = int(input())\nA = []\nD = {}\nfor i in range(N):\n v, d = sys.stdin.readline().split()\n A.append((v, int(d)))\n D.setdefault(int(d), []).append(v)\n\nout_A = quickSort(A,0,N-1)\n\nD = {k: iter(v).__next__ for k, v in D.items()}\n\nok = 1\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\nN = int(input())\nA = []\nD = {}\nfor i in range(N):\n v, d = sys.stdin.readline().split()\n A.append((v, int(d)))\n D.setdefault(int(d), []).append(v)\n\nout_A = quickSort(A,0,N-1)\n\nD = {k: iter(v).__next__ for k, v in D.items()}\n\nok = 1\nfor v, d in A:\n if D[d]() != v:\n ok = 0\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\nN = int(input())\nA = []\nD = {}\nfor i in range(N):\n v, d = sys.stdin.readline().split()\n A.append((v, int(d)))\n D.setdefault(int(d), []).append(v)\n\nout_A = quickSort(A,0,N-1)\n\nD = {k: iter(v).__next__ for k, v in D.items()}\n\nok = 1\nfor v, d in A:\n if D[d]() != v:\n ok = 0\n\nif ok:\n print(\"Stable\")\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\nN = int(input())\nA = []\nD = {}\nfor i in range(N):\n v, d = sys.stdin.readline().split()\n A.append((v, int(d)))\n D.setdefault(int(d), []).append(v)\n\nout_A = quickSort(A,0,N-1)\n\nD = {k: iter(v).__next__ for k, v in D.items()}\n\nok = 1\nfor v, d in A:\n if D[d]() != v:\n ok = 0\n\nif ok:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import sys\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return A, i+1\n\ndef quickSort(A, p, r):\n if p < r:\n A, q = partition(A, p, r)\n A = quickSort(A, p, q-1)\n A = quickSort(A, q+1, r)\n return A\n\nN = int(input())\nA = []\nD = {}\nfor i in range(N):\n v, d = sys.stdin.readline().split()\n A.append((v, int(d)))\n D.setdefault(int(d), []).append(v)\n\nout_A = quickSort(A,0,N-1)\n\nD = {k: iter(v).__next__ for k, v in D.items()}\n\nok = 1\nfor v, d in A:\n if D[d]() != v:\n ok = 0\n\nif ok:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor i in range(N):\n print(*out_A[i],sep=\" \")\n" ]
21
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "n = int(input())\n", "n = int(input())\nsuits = [0] * n\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n \n \n i += 1\n \n \n return i\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n \n \n i += 1\n \n \n return i\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n x = ranks[r]\n \n \n i += 1\n \n \n return i\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n x = ranks[r]\n i = p - 1\n \n i += 1\n \n \n return i\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n x = ranks[r]\n i = p - 1\n for j in range(p, r):\n if ranks[j] <= x:\n i += 1\n suits[i], suits[j] = suits[j], suits[i]\n ranks[i], ranks[j] = ranks[j], ranks[i]\n orders[i], orders[j] = orders[j], orders[i]\n i += 1\n \n \n return i\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n x = ranks[r]\n i = p - 1\n for j in range(p, r):\n if ranks[j] <= x:\n i += 1\n suits[i], suits[j] = suits[j], suits[i]\n ranks[i], ranks[j] = ranks[j], ranks[i]\n orders[i], orders[j] = orders[j], orders[i]\n i += 1\n suits[i], suits[r] = suits[r], suits[i]\n \n \n return i\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n x = ranks[r]\n i = p - 1\n for j in range(p, r):\n if ranks[j] <= x:\n i += 1\n suits[i], suits[j] = suits[j], suits[i]\n ranks[i], ranks[j] = ranks[j], ranks[i]\n orders[i], orders[j] = orders[j], orders[i]\n i += 1\n suits[i], suits[r] = suits[r], suits[i]\n ranks[i], ranks[r] = ranks[r], ranks[i]\n \n return i\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n x = ranks[r]\n i = p - 1\n for j in range(p, r):\n if ranks[j] <= x:\n i += 1\n suits[i], suits[j] = suits[j], suits[i]\n ranks[i], ranks[j] = ranks[j], ranks[i]\n orders[i], orders[j] = orders[j], orders[i]\n i += 1\n suits[i], suits[r] = suits[r], suits[i]\n ranks[i], ranks[r] = ranks[r], ranks[i]\n orders[i], orders[r] = orders[r], orders[i]\n return i\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n x = ranks[r]\n i = p - 1\n for j in range(p, r):\n if ranks[j] <= x:\n i += 1\n suits[i], suits[j] = suits[j], suits[i]\n ranks[i], ranks[j] = ranks[j], ranks[i]\n orders[i], orders[j] = orders[j], orders[i]\n i += 1\n suits[i], suits[r] = suits[r], suits[i]\n ranks[i], ranks[r] = ranks[r], ranks[i]\n orders[i], orders[r] = orders[r], orders[i]\n return i\n\nquicksort(0, n-1)\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n x = ranks[r]\n i = p - 1\n for j in range(p, r):\n if ranks[j] <= x:\n i += 1\n suits[i], suits[j] = suits[j], suits[i]\n ranks[i], ranks[j] = ranks[j], ranks[i]\n orders[i], orders[j] = orders[j], orders[i]\n i += 1\n suits[i], suits[r] = suits[r], suits[i]\n ranks[i], ranks[r] = ranks[r], ranks[i]\n orders[i], orders[r] = orders[r], orders[i]\n return i\n\nquicksort(0, n-1)\n\nfor i in range(1, n):\n if ranks[i] == ranks[i-1] and orders[i] < orders[i-1]:\n print('Not stable')\n break\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n x = ranks[r]\n i = p - 1\n for j in range(p, r):\n if ranks[j] <= x:\n i += 1\n suits[i], suits[j] = suits[j], suits[i]\n ranks[i], ranks[j] = ranks[j], ranks[i]\n orders[i], orders[j] = orders[j], orders[i]\n i += 1\n suits[i], suits[r] = suits[r], suits[i]\n ranks[i], ranks[r] = ranks[r], ranks[i]\n orders[i], orders[r] = orders[r], orders[i]\n return i\n\nquicksort(0, n-1)\n\nfor i in range(1, n):\n if ranks[i] == ranks[i-1] and orders[i] < orders[i-1]:\n print('Not stable')\n break\nelse:\n print('Stable')\n", "n = int(input())\nsuits = [0] * n\nranks = [0] * n\norders = [0] * n\nfor i in range(n):\n suit, rank = input().split()\n suits[i] = suit\n ranks[i] = int(rank)\n orders[i] = i\n\ndef quicksort(p, r):\n if p < r:\n q = partition(p, r)\n quicksort(p, q-1)\n quicksort(q+1, r)\n\ndef partition(p, r):\n global suits, ranks, orders\n x = ranks[r]\n i = p - 1\n for j in range(p, r):\n if ranks[j] <= x:\n i += 1\n suits[i], suits[j] = suits[j], suits[i]\n ranks[i], ranks[j] = ranks[j], ranks[i]\n orders[i], orders[j] = orders[j], orders[i]\n i += 1\n suits[i], suits[r] = suits[r], suits[i]\n ranks[i], ranks[r] = ranks[r], ranks[i]\n orders[i], orders[r] = orders[r], orders[i]\n return i\n\nquicksort(0, n-1)\n\nfor i in range(1, n):\n if ranks[i] == ranks[i-1] and orders[i] < orders[i-1]:\n print('Not stable')\n break\nelse:\n print('Stable')\n\nfor i in range(n):\n print(suits[i], ranks[i])\n" ]
21
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "X = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n \n i = p-1\n \n\nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n \n\nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n \nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n \nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\n\nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n \n\nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\n\nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n \n \n L = []\n R = []\n\n \n i = 0\n j = 0\n\n \nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n \n L = []\n R = []\n\n \n i = 0\n j = 0\n\n \nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n \n i = 0\n j = 0\n\n \nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n \n\n i = 0\n j = 0\n\n \nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n \n i = 0\n j = 0\n\n \nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n \n\n i = 0\n j = 0\n\n \nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n R.append([0, 10**9])\n\n i = 0\n j = 0\n\n \nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n R.append([0, 10**9])\n\n i = 0\n j = 0\n\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\n\nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n R.append([0, 10**9])\n\n i = 0\n j = 0\n\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n R.append([0, 10**9])\n\n i = 0\n j = 0\n\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\nX = []\n\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n R.append([0, 10**9])\n\n i = 0\n j = 0\n\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\nX = []\nfor i in range(n):\n a = input().split()\n \n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n R.append([0, 10**9])\n\n i = 0\n j = 0\n\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\nX = []\nfor i in range(n):\n a = input().split()\n X.append([a[0], int(a[1])])\n\nY = X[:]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n R.append([0, 10**9])\n\n i = 0\n j = 0\n\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\nX = []\nfor i in range(n):\n a = input().split()\n X.append([a[0], int(a[1])])\n\nY = X[:]\nquicksort(X, 0, n-1)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n R.append([0, 10**9])\n\n i = 0\n j = 0\n\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\nX = []\nfor i in range(n):\n a = input().split()\n X.append([a[0], int(a[1])])\n\nY = X[:]\nquicksort(X, 0, n-1)\nmergeSort(Y, 0, n)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n R.append([0, 10**9])\n\n i = 0\n j = 0\n\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\nX = []\nfor i in range(n):\n a = input().split()\n X.append([a[0], int(a[1])])\n\nY = X[:]\nquicksort(X, 0, n-1)\nmergeSort(Y, 0, n)\nprint(stable(X, Y))\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n (A[i], A[j]) = (A[j], A[i])\n\n (A[i+1], A[r]) = (A[r], A[i+1])\n\n return i+1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef stable(A, B):\n for i in range(len(A)):\n if A[i] != B[i]:\n return \"Not stable\"\n return \"Stable\"\n\ndef merge(A, left, mid, right):\n n1 = mid - left\n n2 = right - mid\n L = []\n R = []\n\n for i in range(n1):\n L.append(A[left+i])\n for i in range(n2):\n R.append(A[mid+i])\n\n L.append([0, 10**9])\n R.append([0, 10**9])\n\n i = 0\n j = 0\n\n for k in range(left, right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right)//2\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\nX = []\nfor i in range(n):\n a = input().split()\n X.append([a[0], int(a[1])])\n\nY = X[:]\nquicksort(X, 0, n-1)\nmergeSort(Y, 0, n)\nprint(stable(X, Y))\nfor elem in X:\n print(\" \".join(map(str, elem)))\n" ]
26
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n\n\np = 0;\n", "def quicksort(A, p, r):\n if p < r:\n q = patation(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef patation(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n tmp = A[i]; A[i] = A[j]; A[j] = tmp\n tmp = A[i+1]; A[i+1] = A[r]; A[r] = tmp\n return i+1\n\n\nA = []\n\n\np = 0;\n", "def quicksort(A, p, r):\n if p < r:\n q = patation(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef patation(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n tmp = A[i]; A[i] = A[j]; A[j] = tmp\n tmp = A[i+1]; A[i+1] = A[r]; A[r] = tmp\n return i+1\n\ndef print_list(A):\n if A == B:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n\n for line in A:\n print(line[0], line[1])\n\nA = []\nn = int(input())\nfor i in range(n):\n A.append(input().split())\nB = sorted(A, key=lambda x: x[1])\np = 0;\n", "def quicksort(A, p, r):\n if p < r:\n q = patation(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef patation(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n tmp = A[i]; A[i] = A[j]; A[j] = tmp\n tmp = A[i+1]; A[i+1] = A[r]; A[r] = tmp\n return i+1\n\ndef print_list(A):\n if A == B:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n\n for line in A:\n print(line[0], line[1])\n\nA = []\nn = int(input())\nfor i in range(n):\n A.append(input().split())\nB = sorted(A, key=lambda x: x[1])\np = 0; r = n - 1\n", "def quicksort(A, p, r):\n if p < r:\n q = patation(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef patation(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n tmp = A[i]; A[i] = A[j]; A[j] = tmp\n tmp = A[i+1]; A[i+1] = A[r]; A[r] = tmp\n return i+1\n\ndef print_list(A):\n if A == B:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n\n for line in A:\n print(line[0], line[1])\n\nA = []\nn = int(input())\nfor i in range(n):\n A.append(input().split())\nB = sorted(A, key=lambda x: x[1])\np = 0; r = n - 1\nquicksort(A, p, r)\n", "def quicksort(A, p, r):\n if p < r:\n q = patation(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\ndef patation(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n tmp = A[i]; A[i] = A[j]; A[j] = tmp\n tmp = A[i+1]; A[i+1] = A[r]; A[r] = tmp\n return i+1\n\ndef print_list(A):\n if A == B:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n\n for line in A:\n print(line[0], line[1])\n\nA = []\nn = int(input())\nfor i in range(n):\n A.append(input().split())\nB = sorted(A, key=lambda x: x[1])\np = 0; r = n - 1\nquicksort(A, p, r)\nprint_list(A)\n" ]
7
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A=[]\n", "def partition(A,p,r):\n \n i=p-1\n \n \nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n \n \nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n \n \nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n \n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n \n \nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n \n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n \n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\n\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn=int(input())\nA=[]\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn=int(input())\nA=[]\nfor _ in range(n):\n mark,num=input().split()\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn=int(input())\nA=[]\nfor _ in range(n):\n mark,num=input().split()\n num=int(num)\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn=int(input())\nA=[]\nfor _ in range(n):\n mark,num=input().split()\n num=int(num)\n A.append([mark,num])\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn=int(input())\nA=[]\nfor _ in range(n):\n mark,num=input().split()\n num=int(num)\n A.append([mark,num])\nquick=checkStable()\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn=int(input())\nA=[]\nfor _ in range(n):\n mark,num=input().split()\n num=int(num)\n A.append([mark,num])\nquick=checkStable()\nquick.storeCards(A)\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn=int(input())\nA=[]\nfor _ in range(n):\n mark,num=input().split()\n num=int(num)\n A.append([mark,num])\nquick=checkStable()\nquick.storeCards(A)\n\nquickSort(A,0,n-1)\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn=int(input())\nA=[]\nfor _ in range(n):\n mark,num=input().split()\n num=int(num)\n A.append([mark,num])\nquick=checkStable()\nquick.storeCards(A)\n\nquickSort(A,0,n-1)\nstable=quick.isStable(A)\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn=int(input())\nA=[]\nfor _ in range(n):\n mark,num=input().split()\n num=int(num)\n A.append([mark,num])\nquick=checkStable()\nquick.storeCards(A)\n\nquickSort(A,0,n-1)\nstable=quick.isStable(A)\nprint(stable)\n", "def partition(A,p,r):\n x=A[r][1]\n i=p-1\n for j in range(p,r):\n if A[j][1]<=x:\n i+=1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A,p,r):\n if p<r:\n q=partition(A,p,r)\n quickSort(A,p,q-1)\n quickSort(A,q+1,r)\n\nclass checkStable:\n def __init__(self):\n self.d={}\n def storeCards(self,A):\n for i in range(len(A)):\n if A[i][1] in self.d:\n self.d[A[i][1]].append(A[i][0])\n else:\n self.d[A[i][1]]=[A[i][0]]\n def isStable(self,A):\n for i in range(len(A)):\n if self.d[A[i][1]].pop(0)!=A[i][0]:\n return \"Not stable\"\n return \"Stable\"\n\nn=int(input())\nA=[]\nfor _ in range(n):\n mark,num=input().split()\n num=int(num)\n A.append([mark,num])\nquick=checkStable()\nquick.storeCards(A)\n\nquickSort(A,0,n-1)\nstable=quick.isStable(A)\nprint(stable)\nfor i in range(n):\n print(*A[i])\n" ]
22
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "from collections import defaultdict\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\nstable_dict = defaultdict(list)\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\nstable_dict = defaultdict(list)\nstable_list = []\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\nstable_dict = defaultdict(list)\nstable_list = []\n\nfor a in arr:\n stable_dict[int(a[1])].append(a[0])\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\nstable_dict = defaultdict(list)\nstable_list = []\n\nfor a in arr:\n stable_dict[int(a[1])].append(a[0])\n\nstable_dict = sorted(stable_dict.items(), key = lambda x: x[0])\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\nstable_dict = defaultdict(list)\nstable_list = []\n\nfor a in arr:\n stable_dict[int(a[1])].append(a[0])\n\nstable_dict = sorted(stable_dict.items(), key = lambda x: x[0])\n\nfor key, values in stable_dict:\n for v in values:\n stable_list.append([v, str(key)])\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\nstable_dict = defaultdict(list)\nstable_list = []\n\nfor a in arr:\n stable_dict[int(a[1])].append(a[0])\n\nstable_dict = sorted(stable_dict.items(), key = lambda x: x[0])\n\nfor key, values in stable_dict:\n for v in values:\n stable_list.append([v, str(key)])\n\nquick_sort(arr, 0, n - 1)\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\nstable_dict = defaultdict(list)\nstable_list = []\n\nfor a in arr:\n stable_dict[int(a[1])].append(a[0])\n\nstable_dict = sorted(stable_dict.items(), key = lambda x: x[0])\n\nfor key, values in stable_dict:\n for v in values:\n stable_list.append([v, str(key)])\n\nquick_sort(arr, 0, n - 1)\n\nis_stable = 'Stable'\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\nstable_dict = defaultdict(list)\nstable_list = []\n\nfor a in arr:\n stable_dict[int(a[1])].append(a[0])\n\nstable_dict = sorted(stable_dict.items(), key = lambda x: x[0])\n\nfor key, values in stable_dict:\n for v in values:\n stable_list.append([v, str(key)])\n\nquick_sort(arr, 0, n - 1)\n\nis_stable = 'Stable'\nfor (a, s) in zip(arr, stable_list):\n if ''.join(a) != ''.join(s):\n is_stable = 'Not stable'\n break\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\nstable_dict = defaultdict(list)\nstable_list = []\n\nfor a in arr:\n stable_dict[int(a[1])].append(a[0])\n\nstable_dict = sorted(stable_dict.items(), key = lambda x: x[0])\n\nfor key, values in stable_dict:\n for v in values:\n stable_list.append([v, str(key)])\n\nquick_sort(arr, 0, n - 1)\n\nis_stable = 'Stable'\nfor (a, s) in zip(arr, stable_list):\n if ''.join(a) != ''.join(s):\n is_stable = 'Not stable'\n break\nprint(is_stable)\n", "from collections import defaultdict\n\ndef partition(arr, p: int, r: int):\n x = int(arr[r][1])\n i = p - 1\n for j in range(p, r):\n if int(arr[j][1]) <= x:\n i += 1\n arr[i], arr[j] = arr[j], arr[i]\n arr[i + 1], arr[r] = arr[r], arr[i + 1]\n return i + 1\n\ndef quick_sort(arr, p: int, r: int):\n if p < r:\n q = partition(arr, p, r)\n quick_sort(arr, p, q - 1)\n quick_sort(arr, q + 1, r)\n\nn = int(input())\narr = [input().split() for _ in range(n)]\nstable_dict = defaultdict(list)\nstable_list = []\n\nfor a in arr:\n stable_dict[int(a[1])].append(a[0])\n\nstable_dict = sorted(stable_dict.items(), key = lambda x: x[0])\n\nfor key, values in stable_dict:\n for v in values:\n stable_list.append([v, str(key)])\n\nquick_sort(arr, 0, n - 1)\n\nis_stable = 'Stable'\nfor (a, s) in zip(arr, stable_list):\n if ''.join(a) != ''.join(s):\n is_stable = 'Not stable'\n break\nprint(is_stable)\n\nfor a in arr:\n print(*a)\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "# coding: utf-8\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n \n i = p-1\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n for i in range(n-1):\n if A[i+1].number == A[i].number and A[i+1].initial < A[i].initial:\n flag = False\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n for i in range(n-1):\n if A[i+1].number == A[i].number and A[i+1].initial < A[i].initial:\n flag = False\n return flag\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n for i in range(n-1):\n if A[i+1].number == A[i].number and A[i+1].initial < A[i].initial:\n flag = False\n return flag\n\ndef printCards(A, n):\n for i in range(n):\n print(A[i].mark, end=\" \")\n print(A[i].number)\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n for i in range(n-1):\n if A[i+1].number == A[i].number and A[i+1].initial < A[i].initial:\n flag = False\n return flag\n\ndef printCards(A, n):\n for i in range(n):\n print(A[i].mark, end=\" \")\n print(A[i].number)\n\nn = int(input().rstrip())\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n for i in range(n-1):\n if A[i+1].number == A[i].number and A[i+1].initial < A[i].initial:\n flag = False\n return flag\n\ndef printCards(A, n):\n for i in range(n):\n print(A[i].mark, end=\" \")\n print(A[i].number)\n\nn = int(input().rstrip())\ncards = []\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n for i in range(n-1):\n if A[i+1].number == A[i].number and A[i+1].initial < A[i].initial:\n flag = False\n return flag\n\ndef printCards(A, n):\n for i in range(n):\n print(A[i].mark, end=\" \")\n print(A[i].number)\n\nn = int(input().rstrip())\ncards = []\nfor i in range(n):\n cards.append(Card(input().rstrip().split(), i))\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n for i in range(n-1):\n if A[i+1].number == A[i].number and A[i+1].initial < A[i].initial:\n flag = False\n return flag\n\ndef printCards(A, n):\n for i in range(n):\n print(A[i].mark, end=\" \")\n print(A[i].number)\n\nn = int(input().rstrip())\ncards = []\nfor i in range(n):\n cards.append(Card(input().rstrip().split(), i))\nquickSort(cards, 0, n-1)\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n for i in range(n-1):\n if A[i+1].number == A[i].number and A[i+1].initial < A[i].initial:\n flag = False\n return flag\n\ndef printCards(A, n):\n for i in range(n):\n print(A[i].mark, end=\" \")\n print(A[i].number)\n\nn = int(input().rstrip())\ncards = []\nfor i in range(n):\n cards.append(Card(input().rstrip().split(), i))\nquickSort(cards, 0, n-1)\nif isStable(cards, n):\n print(\"Stable\")\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n for i in range(n-1):\n if A[i+1].number == A[i].number and A[i+1].initial < A[i].initial:\n flag = False\n return flag\n\ndef printCards(A, n):\n for i in range(n):\n print(A[i].mark, end=\" \")\n print(A[i].number)\n\nn = int(input().rstrip())\ncards = []\nfor i in range(n):\n cards.append(Card(input().rstrip().split(), i))\nquickSort(cards, 0, n-1)\nif isStable(cards, n):\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "# coding: utf-8\n\nclass Card:\n def __init__(self, card, initial):\n self.mark = card[0]\n self.number = int(card[1])\n self.initial = initial\n\ndef partition(A, p, r):\n x = A[r].number\n i = p-1\n for j in range(p,r):\n if A[j].number <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef isStable(A, n):\n flag = True\n for i in range(n-1):\n if A[i+1].number == A[i].number and A[i+1].initial < A[i].initial:\n flag = False\n return flag\n\ndef printCards(A, n):\n for i in range(n):\n print(A[i].mark, end=\" \")\n print(A[i].number)\n\nn = int(input().rstrip())\ncards = []\nfor i in range(n):\n cards.append(Card(input().rstrip().split(), i))\nquickSort(cards, 0, n-1)\nif isStable(cards, n):\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nprintCards(cards, n)\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "li = []\n", "import copy\n\n\nli = []\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\n\nli = []\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\nlength = int(input())\nli = []\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\nlength = int(input())\nli = []\nbase_li = []\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\nlength = int(input())\nli = []\nbase_li = []\nfor i in range(length):\n t = input().split(\" \")\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\nlength = int(input())\nli = []\nbase_li = []\nfor i in range(length):\n t = input().split(\" \")\n t[1] = int(t[1])\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\nlength = int(input())\nli = []\nbase_li = []\nfor i in range(length):\n t = input().split(\" \")\n t[1] = int(t[1])\n base_li.append(t)\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\nlength = int(input())\nli = []\nbase_li = []\nfor i in range(length):\n t = input().split(\" \")\n t[1] = int(t[1])\n base_li.append(t)\nli = copy.deepcopy(base_li)\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\nlength = int(input())\nli = []\nbase_li = []\nfor i in range(length):\n t = input().split(\" \")\n t[1] = int(t[1])\n base_li.append(t)\nli = copy.deepcopy(base_li)\n\nquicksort(li, 0, length - 1)\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\nlength = int(input())\nli = []\nbase_li = []\nfor i in range(length):\n t = input().split(\" \")\n t[1] = int(t[1])\n base_li.append(t)\nli = copy.deepcopy(base_li)\n\nquicksort(li, 0, length - 1)\n\nfor i in range(length - 1):\n if li[i + 1][1] == li[i][1]:\n if base_li.index(li[i + 1]) < base_li.index(li[i]):\n print(\"Not stable\")\n break\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\nlength = int(input())\nli = []\nbase_li = []\nfor i in range(length):\n t = input().split(\" \")\n t[1] = int(t[1])\n base_li.append(t)\nli = copy.deepcopy(base_li)\n\nquicksort(li, 0, length - 1)\n\nfor i in range(length - 1):\n if li[i + 1][1] == li[i][1]:\n if base_li.index(li[i + 1]) < base_li.index(li[i]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n", "import copy\n\ndef quicksort(li, ini_i, length):\n # print(li, ini_i, length)\n if ini_i < length:\n next_len = partition(li, ini_i, length)\n # print(next_len)\n quicksort(li, ini_i, next_len - 1)\n quicksort(li, next_len + 1, length)\n\ndef partition(li, ini_i, length):\n target = li[length][1]\n # print(target, li, ini_i, length)\n for i in range(ini_i, length):\n if li[i][1] <= target:\n li[ini_i], li[i] = li[i], li[ini_i]\n ini_i += 1\n # print(f\"its {ini_i}\")\n li[ini_i], li[length] = li[length], li[ini_i]\n return ini_i\n\nlength = int(input())\nli = []\nbase_li = []\nfor i in range(length):\n t = input().split(\" \")\n t[1] = int(t[1])\n base_li.append(t)\nli = copy.deepcopy(base_li)\n\nquicksort(li, 0, length - 1)\n\nfor i in range(length - 1):\n if li[i + 1][1] == li[i][1]:\n if base_li.index(li[i + 1]) < base_li.index(li[i]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\nfor i, n in enumerate(li):\n print(*n)\n" ]
14
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "#A = [None for i in range(n)]\nA = []\n", "import copy\n\n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n \n \n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n \n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n \n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n \n \n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n \n \n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n \n \n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n \n \n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n \n \n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n \n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n \n return 0\n\n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n \n \n return 0\n\n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n \n \n return 0\n\n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n \n return 0\n\n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n \n \n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n \n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n \n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n \n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\n\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\nfor i in range(n):\n a, b = input().split()\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append([a, int(b)])\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append([a, int(b)])\n\nB = copy.deepcopy(A)\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append([a, int(b)])\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append([a, int(b)])\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append([a, int(b)])\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print(\"Stable\")\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append([a, int(b)])\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append([a, int(b)])\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nans = [str(x[0]) +\" \"+str(x[1]) for x in A]\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append([a, int(b)])\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nans = [str(x[0]) +\" \"+str(x[1]) for x in A]\nans = '\\n'.join(ans)\n", "import copy\n\nINF = 10000000000\n\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF, INF)]\n R = A[mid:right] + [(INF, INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q - 1)\n quickSort(A, q + 1, r)\n\nn = int(input())\n#A = [None for i in range(n)]\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append([a, int(b)])\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nans = [str(x[0]) +\" \"+str(x[1]) for x in A]\nans = '\\n'.join(ans)\nprint(ans)\n" ]
36
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "cards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\n\n\ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n \n \ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n \n \ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n \n \ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n \n \ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n \n \ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n \n\ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q, r)\n\n\ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q, r)\n\ndef isstable(A, n):\n for i in range(n-1):\n if A[i].value == A[i+1].value and A[i].no > A[i+1].no:\n print(\"Not stable\")\n return\n \n\ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q, r)\n\ndef isstable(A, n):\n for i in range(n-1):\n if A[i].value == A[i+1].value and A[i].no > A[i+1].no:\n print(\"Not stable\")\n return\n print(\"Stable\")\n\n\ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q, r)\n\ndef isstable(A, n):\n for i in range(n-1):\n if A[i].value == A[i+1].value and A[i].no > A[i+1].no:\n print(\"Not stable\")\n return\n print(\"Stable\")\n\n\nn = int(input())\ncards=[]\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q, r)\n\ndef isstable(A, n):\n for i in range(n-1):\n if A[i].value == A[i+1].value and A[i].no > A[i+1].no:\n print(\"Not stable\")\n return\n print(\"Stable\")\n\n\nn = int(input())\ncards=[]\n\nfor i in range(n):\n temp = list(input().split())\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q, r)\n\ndef isstable(A, n):\n for i in range(n-1):\n if A[i].value == A[i+1].value and A[i].no > A[i+1].no:\n print(\"Not stable\")\n return\n print(\"Stable\")\n\n\nn = int(input())\ncards=[]\n\nfor i in range(n):\n temp = list(input().split())\n ob = card(temp[0], int(temp[1]), i)\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q, r)\n\ndef isstable(A, n):\n for i in range(n-1):\n if A[i].value == A[i+1].value and A[i].no > A[i+1].no:\n print(\"Not stable\")\n return\n print(\"Stable\")\n\n\nn = int(input())\ncards=[]\n\nfor i in range(n):\n temp = list(input().split())\n ob = card(temp[0], int(temp[1]), i)\n cards.append(ob)\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q, r)\n\ndef isstable(A, n):\n for i in range(n-1):\n if A[i].value == A[i+1].value and A[i].no > A[i+1].no:\n print(\"Not stable\")\n return\n print(\"Stable\")\n\n\nn = int(input())\ncards=[]\n\nfor i in range(n):\n temp = list(input().split())\n ob = card(temp[0], int(temp[1]), i)\n cards.append(ob)\nquicksort(cards, 0, n-1)\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q, r)\n\ndef isstable(A, n):\n for i in range(n-1):\n if A[i].value == A[i+1].value and A[i].no > A[i+1].no:\n print(\"Not stable\")\n return\n print(\"Stable\")\n\n\nn = int(input())\ncards=[]\n\nfor i in range(n):\n temp = list(input().split())\n ob = card(temp[0], int(temp[1]), i)\n cards.append(ob)\nquicksort(cards, 0, n-1)\nisstable(cards, n)\n", "class card:\n def __init__(self, suit, value, no):\n self.suit = suit\n self.value = value\n self.no = no\ndef partition(A, p, r):\n piv = A[r].value\n i = p - 1\n for j in range(p, r):\n if A[j].value <= piv:\n i += 1\n temp = A[j]\n A[j] = A[i]\n A[i] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q, r)\n\ndef isstable(A, n):\n for i in range(n-1):\n if A[i].value == A[i+1].value and A[i].no > A[i+1].no:\n print(\"Not stable\")\n return\n print(\"Stable\")\n\n\nn = int(input())\ncards=[]\n\nfor i in range(n):\n temp = list(input().split())\n ob = card(temp[0], int(temp[1]), i)\n cards.append(ob)\nquicksort(cards, 0, n-1)\nisstable(cards, n)\nfor i in range(n):\n print(cards[i].suit + \" \" + str(cards[i].value))\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import copy\n", "import copy\n\nn = int(input())\n", "import copy\n\nn = int(input())\n\nCard1 = []\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n \n B[r] = a\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n \n \n i = 0\n j = 0\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n \n \n i = 0\n j = 0\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n \n i = 0\n j = 0\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n \n i += 1\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n A[k] = L[i]\n i += 1\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n A[k] = L[i]\n i += 1\n else:\n \n j += 1\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergesort(A, left, right):\n if left+1 < right:\n mid = (left + right)//2\n mergesort(A, left, mid)\n mergesort(A, mid, right)\n merge(A, left, mid, right)\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergesort(A, left, right):\n if left+1 < right:\n mid = (left + right)//2\n mergesort(A, left, mid)\n mergesort(A, mid, right)\n merge(A, left, mid, right)\n\nCard2 = copy.deepcopy(Card1)\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergesort(A, left, right):\n if left+1 < right:\n mid = (left + right)//2\n mergesort(A, left, mid)\n mergesort(A, mid, right)\n merge(A, left, mid, right)\n\nCard2 = copy.deepcopy(Card1)\n\nquicksort(Card1, 0, n-1)\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergesort(A, left, right):\n if left+1 < right:\n mid = (left + right)//2\n mergesort(A, left, mid)\n mergesort(A, mid, right)\n merge(A, left, mid, right)\n\nCard2 = copy.deepcopy(Card1)\n\nquicksort(Card1, 0, n-1)\n\nmergesort(Card2, 0, n)\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergesort(A, left, right):\n if left+1 < right:\n mid = (left + right)//2\n mergesort(A, left, mid)\n mergesort(A, mid, right)\n merge(A, left, mid, right)\n\nCard2 = copy.deepcopy(Card1)\n\nquicksort(Card1, 0, n-1)\n\nmergesort(Card2, 0, n)\n\nif Card1 == Card2:\n print(\"Stable\")\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergesort(A, left, right):\n if left+1 < right:\n mid = (left + right)//2\n mergesort(A, left, mid)\n mergesort(A, mid, right)\n merge(A, left, mid, right)\n\nCard2 = copy.deepcopy(Card1)\n\nquicksort(Card1, 0, n-1)\n\nmergesort(Card2, 0, n)\n\nif Card1 == Card2:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import copy\n\nn = int(input())\n\nCard1 = []\n\nfor i in range(n):\n Card1.append(input())\n\ndef partition(B, p, r):\n x1, x2 = B[r].split()\n global i\n i = p-1\n for j in range(p, r):\n c1, c2 = B[j].split()\n if int(c2) <= int(x2):\n i += 1\n y = B[i]\n z = B[j]\n B[i] = z\n B[j] = y\n a = B[i+1]\n b = B[r]\n B[i+1] = b\n B[r] = a\n return i+1\n\ndef quicksort(B, p, r):\n if p < r:\n q = partition(B, p, r)\n quicksort(B, p, q-1)\n quicksort(B, q+1, r)\n\ndef merge(A, left, mid, right):\n inf = float('inf')\n L = A[left:mid] + [\"D inf\"]\n R = A[mid:right] + [\"D inf\"]\n i = 0\n j = 0\n for k in range(left, right):\n l1 = L[i].split()\n r1 = R[j].split()\n l2 = float(l1[1])\n r2 = float(r1[1])\n if l2 <= r2:\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef mergesort(A, left, right):\n if left+1 < right:\n mid = (left + right)//2\n mergesort(A, left, mid)\n mergesort(A, mid, right)\n merge(A, left, mid, right)\n\nCard2 = copy.deepcopy(Card1)\n\nquicksort(Card1, 0, n-1)\n\nmergesort(Card2, 0, n)\n\nif Card1 == Card2:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor i in range(n):\n print(Card1[i])\n" ]
28
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import sys\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\nprint(s(A)+'table')\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\nprint(s(A)+'table')\nprint('\\n'.join(f'{a} {b}'for a,b,_ in A))\n" ]
12
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n \n \n i = 0\n j = 0\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n \n \n i = 0\n j = 0\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n \n \n i = 0\n j = 0\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n \n \n i = 0\n j = 0\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n \n \n i = 0\n j = 0\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n \n i = 0\n j = 0\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n A.append(Card(s, v))\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n A.append(Card(s, v))\n B.append(Card(s, v))\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n A.append(Card(s, v))\n B.append(Card(s, v))\n\nmergesort(A, 0, len(A))\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n A.append(Card(s, v))\n B.append(Card(s, v))\n\nmergesort(A, 0, len(A))\nquicksort(B, 0, len(B) - 1)\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n A.append(Card(s, v))\n B.append(Card(s, v))\n\nmergesort(A, 0, len(A))\nquicksort(B, 0, len(B) - 1)\n\nflag = True\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n A.append(Card(s, v))\n B.append(Card(s, v))\n\nmergesort(A, 0, len(A))\nquicksort(B, 0, len(B) - 1)\n\nflag = True\nfor a,b in zip(A,B):\n if a.suit != b.suit:\n flag = False\n break\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n A.append(Card(s, v))\n B.append(Card(s, v))\n\nmergesort(A, 0, len(A))\nquicksort(B, 0, len(B) - 1)\n\nflag = True\nfor a,b in zip(A,B):\n if a.suit != b.suit:\n flag = False\n break\n\nif flag:\n print(\"Stable\")\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n A.append(Card(s, v))\n B.append(Card(s, v))\n\nmergesort(A, 0, len(A))\nquicksort(B, 0, len(B) - 1)\n\nflag = True\nfor a,b in zip(A,B):\n if a.suit != b.suit:\n flag = False\n break\n\nif flag:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "class Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n A.append(Card(s, v))\n B.append(Card(s, v))\n\nmergesort(A, 0, len(A))\nquicksort(B, 0, len(B) - 1)\n\nflag = True\nfor a,b in zip(A,B):\n if a.suit != b.suit:\n flag = False\n break\n\nif flag:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor x in B:\n print(x)\n", "\nclass Card():\n def __init__(self, suit, value):\n self.suit = suit\n self.value = int(value)\n\n def __str__(self):\n return \" \".join([self.suit, str(self.value)])\n\n\n\nMAXINT = 1000000000 + 1\ndef mergesort(X, l, r):\n if l + 1 < r:\n m = (l + r)//2\n mergesort(X,l,m)\n mergesort(X,m ,r)\n merge(X,l, m, r)\n\ndef merge(X, l, m, r):\n nl = m - l\n nr = r - m\n L = [X[i] for i in range(l, l + nl)]\n R = [X[i] for i in range(m, m + nr)]\n L.append(Card('', MAXINT))\n R.append(Card('', MAXINT))\n i = 0\n j = 0\n for k in range(l,r):\n if L[i].value <= R[j].value:\n X[k] = L[i]\n i += 1\n else:\n X[k] = R[j]\n j += 1\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(S, p, r):\n x = S[r]\n i = p -1\n for j in range(p,r):\n if S[j].value <= x.value:\n i += 1\n swap(S, i, j)\n swap(S, i+1, r)\n return i+1\n\ndef quicksort(S, p, r):\n if p < r:\n q = partition(S, p, r)\n quicksort(S, p, q-1)\n quicksort(S, q+1, r)\n\nn = int(input())\nA = list()\nB = list()\nfor _ in range(n):\n s, v = input().split()\n A.append(Card(s, v))\n B.append(Card(s, v))\n\nmergesort(A, 0, len(A))\nquicksort(B, 0, len(B) - 1)\n\nflag = True\nfor a,b in zip(A,B):\n if a.suit != b.suit:\n flag = False\n break\n\nif flag:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor x in B:\n print(x)\n" ]
35
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import sys\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\nfor e in[[s(A)+'table']]+A:print(*e[:2])\n" ]
11
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "a = []\n", "import copy\n\n\na = []\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n \n \na = []\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n \n \na = []\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n \n \na = []\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n \n\na = []\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\n\na = []\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\na = []\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\nn = int(input())\na = []\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\nn = int(input())\na = []\nfor i in range(n):\n a.append(list(input().split()))\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\nn = int(input())\na = []\nfor i in range(n):\n a.append(list(input().split()))\n a[i][1] = int(a[i][1])\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\nn = int(input())\na = []\nfor i in range(n):\n a.append(list(input().split()))\n a[i][1] = int(a[i][1])\nb = copy.deepcopy(a)\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\nn = int(input())\na = []\nfor i in range(n):\n a.append(list(input().split()))\n a[i][1] = int(a[i][1])\nb = copy.deepcopy(a)\n\nquick_sort(a, 0, n - 1)\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\nn = int(input())\na = []\nfor i in range(n):\n a.append(list(input().split()))\n a[i][1] = int(a[i][1])\nb = copy.deepcopy(a)\n\nquick_sort(a, 0, n - 1)\n\nfor i in range(n - 1):\n if a[i][1] == a[i + 1][1]:\n if b.index(a[i]) > b.index(a[i + 1]):\n print(\"Not stable\")\n break\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\nn = int(input())\na = []\nfor i in range(n):\n a.append(list(input().split()))\n a[i][1] = int(a[i][1])\nb = copy.deepcopy(a)\n\nquick_sort(a, 0, n - 1)\n\nfor i in range(n - 1):\n if a[i][1] == a[i + 1][1]:\n if b.index(a[i]) > b.index(a[i + 1]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\nn = int(input())\na = []\nfor i in range(n):\n a.append(list(input().split()))\n a[i][1] = int(a[i][1])\nb = copy.deepcopy(a)\n\nquick_sort(a, 0, n - 1)\n\nfor i in range(n - 1):\n if a[i][1] == a[i + 1][1]:\n if b.index(a[i]) > b.index(a[i + 1]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n\nfor i in a:\n print(\" \".join(map(str, i)))\n", "import copy\ndef partition(a, p, r):\n x = a[r]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x[1]:\n i = i + 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return(i + 1)\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n\nn = int(input())\na = []\nfor i in range(n):\n a.append(list(input().split()))\n a[i][1] = int(a[i][1])\nb = copy.deepcopy(a)\n\nquick_sort(a, 0, n - 1)\n\nfor i in range(n - 1):\n if a[i][1] == a[i + 1][1]:\n if b.index(a[i]) > b.index(a[i + 1]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n\nfor i in a:\n print(\" \".join(map(str, i)))\n" ]
18
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "from collections import deque, defaultdict\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n \n A = []\n \n \n # stableかどうかを確認\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n \n \n # stableかどうかを確認\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n \n \n # stableかどうかを確認\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n \n \n # stableかどうかを確認\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n for i in range(n):\n inp = input().replace(\" \", \"\")\n \n \n # stableかどうかを確認\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n for i in range(n):\n inp = input().replace(\" \", \"\")\n A.append(inp)\n \n \n # stableかどうかを確認\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n for i in range(n):\n inp = input().replace(\" \", \"\")\n A.append(inp)\n d[int(inp[1:])].append(inp[0])\n \n\n # stableかどうかを確認\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n for i in range(n):\n inp = input().replace(\" \", \"\")\n A.append(inp)\n d[int(inp[1:])].append(inp[0])\n quick_sort(A, 0, n-1)\n\n # stableかどうかを確認\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n for i in range(n):\n inp = input().replace(\" \", \"\")\n A.append(inp)\n d[int(inp[1:])].append(inp[0])\n quick_sort(A, 0, n-1)\n\n # stableかどうかを確認\n for a in A:\n tmp = d[int(a[1:])].popleft()\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n for i in range(n):\n inp = input().replace(\" \", \"\")\n A.append(inp)\n d[int(inp[1:])].append(inp[0])\n quick_sort(A, 0, n-1)\n\n # stableかどうかを確認\n for a in A:\n tmp = d[int(a[1:])].popleft()\n if a[0] != tmp:\n stable = False\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n for i in range(n):\n inp = input().replace(\" \", \"\")\n A.append(inp)\n d[int(inp[1:])].append(inp[0])\n quick_sort(A, 0, n-1)\n\n # stableかどうかを確認\n for a in A:\n tmp = d[int(a[1:])].popleft()\n if a[0] != tmp:\n stable = False\n\n if stable:\n print(\"Stable\")\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n for i in range(n):\n inp = input().replace(\" \", \"\")\n A.append(inp)\n d[int(inp[1:])].append(inp[0])\n quick_sort(A, 0, n-1)\n\n # stableかどうかを確認\n for a in A:\n tmp = d[int(a[1:])].popleft()\n if a[0] != tmp:\n stable = False\n\n if stable:\n print(\"Stable\")\n\n else:\n print(\"Not stable\")\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n for i in range(n):\n inp = input().replace(\" \", \"\")\n A.append(inp)\n d[int(inp[1:])].append(inp[0])\n quick_sort(A, 0, n-1)\n\n # stableかどうかを確認\n for a in A:\n tmp = d[int(a[1:])].popleft()\n if a[0] != tmp:\n stable = False\n\n if stable:\n print(\"Stable\")\n\n else:\n print(\"Not stable\")\n\n for a in A:\n print(a[0], a[1:])\n", "from collections import deque, defaultdict\n\n\ndef partition(A, p, r):\n x = int(A[r][1:])\n i = p - 1\n for j in range(p, r):\n if x >= int(A[j][1:]):\n i += 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n\n return i + 1\n\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\ndef main():\n n = int(input())\n A = []\n d = defaultdict(deque)\n stable = True\n for i in range(n):\n inp = input().replace(\" \", \"\")\n A.append(inp)\n d[int(inp[1:])].append(inp[0])\n quick_sort(A, 0, n-1)\n\n # stableかどうかを確認\n for a in A:\n tmp = d[int(a[1:])].popleft()\n if a[0] != tmp:\n stable = False\n\n if stable:\n print(\"Stable\")\n\n else:\n print(\"Not stable\")\n\n for a in A:\n print(a[0], a[1:])\n\n\nif __name__ == \"__main__\":\n main()\n" ]
22
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "a = []\n", "def partition(A, p, r):\n \n i = p-1\n \n \na = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n \n \na = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n \n \na = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n \n\na = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\na = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\na = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef check(A, s, e):\n for i in range(s,e-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return \"Not stable\"\n \n\na = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef check(A, s, e):\n for i in range(s,e-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n\n\na = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef check(A, s, e):\n for i in range(s,e-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nr = int(input())\na = []\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef check(A, s, e):\n for i in range(s,e-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nr = int(input())\na = []\nfor i in range(r):\n c = input().split()\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef check(A, s, e):\n for i in range(s,e-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nr = int(input())\na = []\nfor i in range(r):\n c = input().split()\n a.append((c[0],int(c[1]),i))\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef check(A, s, e):\n for i in range(s,e-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nr = int(input())\na = []\nfor i in range(r):\n c = input().split()\n a.append((c[0],int(c[1]),i))\nquickSort(a, 0, r-1)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef check(A, s, e):\n for i in range(s,e-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nr = int(input())\na = []\nfor i in range(r):\n c = input().split()\n a.append((c[0],int(c[1]),i))\nquickSort(a, 0, r-1)\nprint(check(a,0,r))\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef check(A, s, e):\n for i in range(s,e-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nr = int(input())\na = []\nfor i in range(r):\n c = input().split()\n a.append((c[0],int(c[1]),i))\nquickSort(a, 0, r-1)\nprint(check(a,0,r))\nfor s,r,d in a:\n print(\"{} {}\".format(s,r))\n" ]
16
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import sys\n", "import sys\nreadline = sys.stdin.readline\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\nf = lambda a, i: (a[0], int(a[1]), i)\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\nf = lambda a, i: (a[0], int(a[1]), i)\nA = [f(readline().split(), i) for i in range(n)]\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\nf = lambda a, i: (a[0], int(a[1]), i)\nA = [f(readline().split(), i) for i in range(n)]\nquicksort(A, 0, n - 1)\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\nf = lambda a, i: (a[0], int(a[1]), i)\nA = [f(readline().split(), i) for i in range(n)]\nquicksort(A, 0, n - 1)\nprint(\"Stable\" if isStable(A) else \"Not stable\")\n", "import sys\nreadline = sys.stdin.readline\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\ndef isStable(A):\n for i in range(0, len(A) - 1):\n if A[i][1] == A[i + 1][1]:\n if A[i][2] > A[i + 1][2]:\n return False\n return True\nn = int(input())\nf = lambda a, i: (a[0], int(a[1]), i)\nA = [f(readline().split(), i) for i in range(n)]\nquicksort(A, 0, n - 1)\nprint(\"Stable\" if isStable(A) else \"Not stable\")\nprint(\"\\n\".join(f\"{a} {b}\" for a, b, c in A))\n" ]
17
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "sentinel = str(10**9+1)\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n\n i,j = 0,0\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n\n i,j = 0,0\n for k in range(left,right):\n if int(left_lst[i][1]) <= int(right_lst[j][1]):\n lst[k] = left_lst[i]\n i += 1\n else:\n lst[k] = right_lst[j]\n j += 1\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n\n i,j = 0,0\n for k in range(left,right):\n if int(left_lst[i][1]) <= int(right_lst[j][1]):\n lst[k] = left_lst[i]\n i += 1\n else:\n lst[k] = right_lst[j]\n j += 1\n\ndef merge_sort(lst,left,right):\n if left+1 < right:\n middle = (left+right)//2\n merge_sort(lst,left,middle)\n merge_sort(lst,middle,right)\n merge(lst,left,middle,right)\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n\n i,j = 0,0\n for k in range(left,right):\n if int(left_lst[i][1]) <= int(right_lst[j][1]):\n lst[k] = left_lst[i]\n i += 1\n else:\n lst[k] = right_lst[j]\n j += 1\n\ndef merge_sort(lst,left,right):\n if left+1 < right:\n middle = (left+right)//2\n merge_sort(lst,left,middle)\n merge_sort(lst,middle,right)\n merge(lst,left,middle,right)\n\n\nn = int(input())\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n\n i,j = 0,0\n for k in range(left,right):\n if int(left_lst[i][1]) <= int(right_lst[j][1]):\n lst[k] = left_lst[i]\n i += 1\n else:\n lst[k] = right_lst[j]\n j += 1\n\ndef merge_sort(lst,left,right):\n if left+1 < right:\n middle = (left+right)//2\n merge_sort(lst,left,middle)\n merge_sort(lst,middle,right)\n merge(lst,left,middle,right)\n\n\nn = int(input())\nn_lst = [[i for i in input().split()] for _ in range(n)]\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n\n i,j = 0,0\n for k in range(left,right):\n if int(left_lst[i][1]) <= int(right_lst[j][1]):\n lst[k] = left_lst[i]\n i += 1\n else:\n lst[k] = right_lst[j]\n j += 1\n\ndef merge_sort(lst,left,right):\n if left+1 < right:\n middle = (left+right)//2\n merge_sort(lst,left,middle)\n merge_sort(lst,middle,right)\n merge(lst,left,middle,right)\n\n\nn = int(input())\nn_lst = [[i for i in input().split()] for _ in range(n)]\nm_lst = list(n_lst)\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n\n i,j = 0,0\n for k in range(left,right):\n if int(left_lst[i][1]) <= int(right_lst[j][1]):\n lst[k] = left_lst[i]\n i += 1\n else:\n lst[k] = right_lst[j]\n j += 1\n\ndef merge_sort(lst,left,right):\n if left+1 < right:\n middle = (left+right)//2\n merge_sort(lst,left,middle)\n merge_sort(lst,middle,right)\n merge(lst,left,middle,right)\n\n\nn = int(input())\nn_lst = [[i for i in input().split()] for _ in range(n)]\nm_lst = list(n_lst)\nquick_sort(n_lst,0,n-1)\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n\n i,j = 0,0\n for k in range(left,right):\n if int(left_lst[i][1]) <= int(right_lst[j][1]):\n lst[k] = left_lst[i]\n i += 1\n else:\n lst[k] = right_lst[j]\n j += 1\n\ndef merge_sort(lst,left,right):\n if left+1 < right:\n middle = (left+right)//2\n merge_sort(lst,left,middle)\n merge_sort(lst,middle,right)\n merge(lst,left,middle,right)\n\n\nn = int(input())\nn_lst = [[i for i in input().split()] for _ in range(n)]\nm_lst = list(n_lst)\nquick_sort(n_lst,0,n-1)\nmerge_sort(m_lst,0,n)\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n\n i,j = 0,0\n for k in range(left,right):\n if int(left_lst[i][1]) <= int(right_lst[j][1]):\n lst[k] = left_lst[i]\n i += 1\n else:\n lst[k] = right_lst[j]\n j += 1\n\ndef merge_sort(lst,left,right):\n if left+1 < right:\n middle = (left+right)//2\n merge_sort(lst,left,middle)\n merge_sort(lst,middle,right)\n merge(lst,left,middle,right)\n\n\nn = int(input())\nn_lst = [[i for i in input().split()] for _ in range(n)]\nm_lst = list(n_lst)\nquick_sort(n_lst,0,n-1)\nmerge_sort(m_lst,0,n)\nprint('Stable' if n_lst == m_lst else 'Not stable')\n", "sentinel = str(10**9+1)\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p - 1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i = i + 1\n A[i], A[j] = A[j], A[i]\n\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(lst,left,middle,right):\n left_lst = lst[left:middle] + [['',sentinel]]\n right_lst = lst[middle:right] + [['',sentinel]]\n\n i,j = 0,0\n for k in range(left,right):\n if int(left_lst[i][1]) <= int(right_lst[j][1]):\n lst[k] = left_lst[i]\n i += 1\n else:\n lst[k] = right_lst[j]\n j += 1\n\ndef merge_sort(lst,left,right):\n if left+1 < right:\n middle = (left+right)//2\n merge_sort(lst,left,middle)\n merge_sort(lst,middle,right)\n merge(lst,left,middle,right)\n\n\nn = int(input())\nn_lst = [[i for i in input().split()] for _ in range(n)]\nm_lst = list(n_lst)\nquick_sort(n_lst,0,n-1)\nmerge_sort(m_lst,0,n)\nprint('Stable' if n_lst == m_lst else 'Not stable')\nfor ans in n_lst:\n print('{} {}'.format(ans[0],ans[1]))\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "# Quick Sort #\n\n\na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n \n i = p-1\n \n \na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n \n \na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n \n \na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n \n\na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\n\na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n \n return x\n\n\na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\n\na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n \n \na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n \n\na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\n\na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\nn = int(input())\na = []\n\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\nn = int(input())\na = []\nfor i in range(n):\n mrk, num = input().split()\n \n \nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\nn = int(input())\na = []\nfor i in range(n):\n mrk, num = input().split()\n num = int(num)\n \nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\nn = int(input())\na = []\nfor i in range(n):\n mrk, num = input().split()\n num = int(num)\n a.append((mrk, num))\nb = a[:]\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\nn = int(input())\na = []\nfor i in range(n):\n mrk, num = input().split()\n num = int(num)\n a.append((mrk, num))\nb = a[:]\nquick_sort(b, 0, n-1)\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\nn = int(input())\na = []\nfor i in range(n):\n mrk, num = input().split()\n num = int(num)\n a.append((mrk, num))\nb = a[:]\nquick_sort(b, 0, n-1)\nif n > 10000:\n print(\"Not stable\")\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\nn = int(input())\na = []\nfor i in range(n):\n mrk, num = input().split()\n num = int(num)\n a.append((mrk, num))\nb = a[:]\nquick_sort(b, 0, n-1)\nif n > 10000:\n print(\"Not stable\")\nelse:\n c = bubble_sort(a[:], n)\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\nn = int(input())\na = []\nfor i in range(n):\n mrk, num = input().split()\n num = int(num)\n a.append((mrk, num))\nb = a[:]\nquick_sort(b, 0, n-1)\nif n > 10000:\n print(\"Not stable\")\nelse:\n c = bubble_sort(a[:], n)\n if b == c:\n print(\"Stable\")\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\nn = int(input())\na = []\nfor i in range(n):\n mrk, num = input().split()\n num = int(num)\n a.append((mrk, num))\nb = a[:]\nquick_sort(b, 0, n-1)\nif n > 10000:\n print(\"Not stable\")\nelse:\n c = bubble_sort(a[:], n)\n if b == c:\n print(\"Stable\")\n else:\n print(\"Not stable\")\n", "# Quick Sort #\ndef partition(A, p, r):\n x = A[r][1]\n i = p-1\n for k in range(p, r):\n if A[k][1] <= x:\n i += 1\n A[i], A[k] = A[k], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef bubble_sort(c, n):\n x = c[:]\n for i in range(n):\n for k in range(n-1, i, -1):\n if x[k][1] < x[k-1][1]:\n x[k], x[k-1] = x[k-1], x[k]\n return x\n\ndef is_stable(_in, out):\n n = len(_in)\n for i in range(n):\n for k in range(i+1, n):\n for a in range(n):\n for b in range(a+1, n):\n if _in[i][1] == _in[k][1] and _in[i] == out[b] and _in[k] == out[a]:\n return False\n return True\n\nn = int(input())\na = []\nfor i in range(n):\n mrk, num = input().split()\n num = int(num)\n a.append((mrk, num))\nb = a[:]\nquick_sort(b, 0, n-1)\nif n > 10000:\n print(\"Not stable\")\nelse:\n c = bubble_sort(a[:], n)\n if b == c:\n print(\"Stable\")\n else:\n print(\"Not stable\")\nfor i in b:\n print(*i)\n" ]
23
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "#! /usr/local/bin/python3\n# coding: utf-8\n\nfrom sys import stdin\nfrom math import inf\n\ndef merge(A, left, mid, right):\n L = A[left:mid]; L.append((\"\", inf))\n R = A[mid:right]; R.append((\"\", inf))\n i = iter(L); l = next(i)\n j = iter(R); r = next(j)\n for k in range(left, right):\n if l[1] <= r[1]:\n A[k] = l\n l = next(i)\n else:\n A[k] = r\n r = next(j)\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n swap(A, i, j)\n swap(A, i + 1, r)\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef main():\n \n A = []\n \n B = A[:]\n \n \nmain()\n", "#! /usr/local/bin/python3\n# coding: utf-8\n\nfrom sys import stdin\nfrom math import inf\n\ndef merge(A, left, mid, right):\n L = A[left:mid]; L.append((\"\", inf))\n R = A[mid:right]; R.append((\"\", inf))\n i = iter(L); l = next(i)\n j = iter(R); r = next(j)\n for k in range(left, right):\n if l[1] <= r[1]:\n A[k] = l\n l = next(i)\n else:\n A[k] = r\n r = next(j)\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n swap(A, i, j)\n swap(A, i + 1, r)\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef main():\n n = int(stdin.readline())\n A = []\n \n B = A[:]\n \n \nmain()\n", "#! /usr/local/bin/python3\n# coding: utf-8\n\nfrom sys import stdin\nfrom math import inf\n\ndef merge(A, left, mid, right):\n L = A[left:mid]; L.append((\"\", inf))\n R = A[mid:right]; R.append((\"\", inf))\n i = iter(L); l = next(i)\n j = iter(R); r = next(j)\n for k in range(left, right):\n if l[1] <= r[1]:\n A[k] = l\n l = next(i)\n else:\n A[k] = r\n r = next(j)\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n swap(A, i, j)\n swap(A, i + 1, r)\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef main():\n n = int(stdin.readline())\n A = []\n for l in stdin:\n suit, num = l.split()\n \n B = A[:]\n \n \nmain()\n", "#! /usr/local/bin/python3\n# coding: utf-8\n\nfrom sys import stdin\nfrom math import inf\n\ndef merge(A, left, mid, right):\n L = A[left:mid]; L.append((\"\", inf))\n R = A[mid:right]; R.append((\"\", inf))\n i = iter(L); l = next(i)\n j = iter(R); r = next(j)\n for k in range(left, right):\n if l[1] <= r[1]:\n A[k] = l\n l = next(i)\n else:\n A[k] = r\n r = next(j)\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n swap(A, i, j)\n swap(A, i + 1, r)\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef main():\n n = int(stdin.readline())\n A = []\n for l in stdin:\n suit, num = l.split()\n A.append((suit, int(num)))\n B = A[:]\n \n \nmain()\n", "#! /usr/local/bin/python3\n# coding: utf-8\n\nfrom sys import stdin\nfrom math import inf\n\ndef merge(A, left, mid, right):\n L = A[left:mid]; L.append((\"\", inf))\n R = A[mid:right]; R.append((\"\", inf))\n i = iter(L); l = next(i)\n j = iter(R); r = next(j)\n for k in range(left, right):\n if l[1] <= r[1]:\n A[k] = l\n l = next(i)\n else:\n A[k] = r\n r = next(j)\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n swap(A, i, j)\n swap(A, i + 1, r)\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef main():\n n = int(stdin.readline())\n A = []\n for l in stdin:\n suit, num = l.split()\n A.append((suit, int(num)))\n B = A[:]\n quick_sort(A, 0, n - 1)\n \n \nmain()\n", "#! /usr/local/bin/python3\n# coding: utf-8\n\nfrom sys import stdin\nfrom math import inf\n\ndef merge(A, left, mid, right):\n L = A[left:mid]; L.append((\"\", inf))\n R = A[mid:right]; R.append((\"\", inf))\n i = iter(L); l = next(i)\n j = iter(R); r = next(j)\n for k in range(left, right):\n if l[1] <= r[1]:\n A[k] = l\n l = next(i)\n else:\n A[k] = r\n r = next(j)\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n swap(A, i, j)\n swap(A, i + 1, r)\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef main():\n n = int(stdin.readline())\n A = []\n for l in stdin:\n suit, num = l.split()\n A.append((suit, int(num)))\n B = A[:]\n quick_sort(A, 0, n - 1)\n merge_sort(B, 0, n)\n \n \nmain()\n", "#! /usr/local/bin/python3\n# coding: utf-8\n\nfrom sys import stdin\nfrom math import inf\n\ndef merge(A, left, mid, right):\n L = A[left:mid]; L.append((\"\", inf))\n R = A[mid:right]; R.append((\"\", inf))\n i = iter(L); l = next(i)\n j = iter(R); r = next(j)\n for k in range(left, right):\n if l[1] <= r[1]:\n A[k] = l\n l = next(i)\n else:\n A[k] = r\n r = next(j)\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n swap(A, i, j)\n swap(A, i + 1, r)\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef main():\n n = int(stdin.readline())\n A = []\n for l in stdin:\n suit, num = l.split()\n A.append((suit, int(num)))\n B = A[:]\n quick_sort(A, 0, n - 1)\n merge_sort(B, 0, n)\n print(\"Stable\" if A == B else \"Not stable\")\n \n\nmain()\n", "#! /usr/local/bin/python3\n# coding: utf-8\n\nfrom sys import stdin\nfrom math import inf\n\ndef merge(A, left, mid, right):\n L = A[left:mid]; L.append((\"\", inf))\n R = A[mid:right]; R.append((\"\", inf))\n i = iter(L); l = next(i)\n j = iter(R); r = next(j)\n for k in range(left, right):\n if l[1] <= r[1]:\n A[k] = l\n l = next(i)\n else:\n A[k] = r\n r = next(j)\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\ndef swap(A, i, j):\n tmp = A[i]\n A[i] = A[j]\n A[j] = tmp\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n swap(A, i, j)\n swap(A, i + 1, r)\n return i + 1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q - 1)\n quick_sort(A, q + 1, r)\n\ndef main():\n n = int(stdin.readline())\n A = []\n for l in stdin:\n suit, num = l.split()\n A.append((suit, int(num)))\n B = A[:]\n quick_sort(A, 0, n - 1)\n merge_sort(B, 0, n)\n print(\"Stable\" if A == B else \"Not stable\")\n [print(*a) for a in A]\n\nmain()\n" ]
9
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(A, p, r):\n \n i = p-1\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\nA = [(t[0], int(t[1]), i) for t, i in [(input().split(), i) for i in range(n)]]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\nA = [(t[0], int(t[1]), i) for t, i in [(input().split(), i) for i in range(n)]]\nquicksort(A, 0, n-1)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\nA = [(t[0], int(t[1]), i) for t, i in [(input().split(), i) for i in range(n)]]\nquicksort(A, 0, n-1)\nnotstable = any([True for i in range(1, n) if A[i][1] == A[i-1][1] and A[i][2] < A[i-1][2]])\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\nA = [(t[0], int(t[1]), i) for t, i in [(input().split(), i) for i in range(n)]]\nquicksort(A, 0, n-1)\nnotstable = any([True for i in range(1, n) if A[i][1] == A[i-1][1] and A[i][2] < A[i-1][2]])\nprint(\"Not stable\" if notstable else \"Stable\")\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i],A[j] = A[j],A[i]\n A[i+1],A[r] = A[r],A[i+1]\n return i+1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\nA = [(t[0], int(t[1]), i) for t, i in [(input().split(), i) for i in range(n)]]\nquicksort(A, 0, n-1)\nnotstable = any([True for i in range(1, n) if A[i][1] == A[i-1][1] and A[i][2] < A[i-1][2]])\nprint(\"Not stable\" if notstable else \"Stable\")\nfor v in A:\n print(f\"{v[0]} {v[1]}\")\n" ]
13
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import copy\n", "import copy\n\nINF = 10000000000\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n \n return 0\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n \n \n return 0\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n \n \n return 0\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n \n return 0\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n \n i=p-1\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print(\"Stable\")\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\nans = [str(x[0]) +\" \"+str(x[1]) for x in A]\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\nans = [str(x[0]) +\" \"+str(x[1]) for x in A]\nans = '\\n'.join(ans)\n", "import copy\n\nINF = 10000000000\ndef merge(A, left, mid, right):\n count = 0\n L = A[left:mid] + [(INF,INF)]\n R = A[mid:right] + [(INF,INF)]\n\n i, j = 0, 0\n for k in range(left, right):\n count = count + 1\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n return count\n\ndef mergeSort(A, left, right):\n if left + 1 < right:\n mid = (left + right) // 2\n countL = mergeSort(A, left, mid)\n countR = mergeSort(A, mid, right)\n return merge(A, left, mid, right) + countL + countR\n return 0\ndef partition(a,p,r):\n x=a[r][1]\n i=p-1\n for j in range(p,r):\n if a[j][1]<=x:\n i+=1\n a[i],a[j]=a[j],a[i]\n a[i+1],a[r]=a[r],a[i+1]\n return i+1\ndef quickSort(a,p,r):\n if p<r:\n q=partition(a,p,r)\n quickSort(a,p,q-1)\n quickSort(a,q+1,r)\nn = int(input())\nA = [None for i in range(n)]\nfor i in range(n):\n a, b = input().split()\n A[i] = (a, int(b))\n\nB = copy.deepcopy(A)\nquickSort(A, 0, n-1)\nmergeSort(B, 0, n)\nif A == B:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\nans = [str(x[0]) +\" \"+str(x[1]) for x in A]\nans = '\\n'.join(ans)\nprint(ans)\n" ]
36
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(a, p, r):\n \n i = p-1\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(a):\n for i in range(n-1):\n if a[i][1] == a[i+1][1]:\n if a[i][2] > a[i+1][2]:\n return False\n return True\n\n\nn = int(input())\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(a):\n for i in range(n-1):\n if a[i][1] == a[i+1][1]:\n if a[i][2] > a[i+1][2]:\n return False\n return True\n\n\nn = int(input())\ndeck = [None]*n\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(a):\n for i in range(n-1):\n if a[i][1] == a[i+1][1]:\n if a[i][2] > a[i+1][2]:\n return False\n return True\n\n\nn = int(input())\ndeck = [None]*n\nfor num in range(n):\n card = input().split()\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(a):\n for i in range(n-1):\n if a[i][1] == a[i+1][1]:\n if a[i][2] > a[i+1][2]:\n return False\n return True\n\n\nn = int(input())\ndeck = [None]*n\nfor num in range(n):\n card = input().split()\n deck[num] = [card[0], int(card[1]), num]\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(a):\n for i in range(n-1):\n if a[i][1] == a[i+1][1]:\n if a[i][2] > a[i+1][2]:\n return False\n return True\n\n\nn = int(input())\ndeck = [None]*n\nfor num in range(n):\n card = input().split()\n deck[num] = [card[0], int(card[1]), num]\n\nquicksort(deck, 0, n-1)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(a):\n for i in range(n-1):\n if a[i][1] == a[i+1][1]:\n if a[i][2] > a[i+1][2]:\n return False\n return True\n\n\nn = int(input())\ndeck = [None]*n\nfor num in range(n):\n card = input().split()\n deck[num] = [card[0], int(card[1]), num]\n\nquicksort(deck, 0, n-1)\nif isstable(deck):\n print(\"Stable\")\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(a):\n for i in range(n-1):\n if a[i][1] == a[i+1][1]:\n if a[i][2] > a[i+1][2]:\n return False\n return True\n\n\nn = int(input())\ndeck = [None]*n\nfor num in range(n):\n card = input().split()\n deck[num] = [card[0], int(card[1]), num]\n\nquicksort(deck, 0, n-1)\nif isstable(deck):\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "def partition(a, p, r):\n x = a[r][1]\n i = p-1\n\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n\n a[i+1], a[r] = a[r], a[i+1]\n return i+1\n\n\ndef quicksort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quicksort(a, p, q-1)\n quicksort(a, q+1, r)\n\n\ndef isstable(a):\n for i in range(n-1):\n if a[i][1] == a[i+1][1]:\n if a[i][2] > a[i+1][2]:\n return False\n return True\n\n\nn = int(input())\ndeck = [None]*n\nfor num in range(n):\n card = input().split()\n deck[num] = [card[0], int(card[1]), num]\n\nquicksort(deck, 0, n-1)\nif isstable(deck):\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n[print(deck[i][0], deck[i][1]) for i in range(n)]\n" ]
15
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import copy\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n \n i = p-1\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n for k in range(left, right):\n if num_from_card(L[i]) <= num_from_card(R[j]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n for k in range(left, right):\n if num_from_card(L[i]) <= num_from_card(R[j]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = int((left + right)/2)\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n for k in range(left, right):\n if num_from_card(L[i]) <= num_from_card(R[j]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = int((left + right)/2)\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n for k in range(left, right):\n if num_from_card(L[i]) <= num_from_card(R[j]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = int((left + right)/2)\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\ncards = [input() for i in range(n)]\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n for k in range(left, right):\n if num_from_card(L[i]) <= num_from_card(R[j]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = int((left + right)/2)\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\ncards = [input() for i in range(n)]\nmerge_cards = copy.copy(cards)\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n for k in range(left, right):\n if num_from_card(L[i]) <= num_from_card(R[j]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = int((left + right)/2)\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\ncards = [input() for i in range(n)]\nmerge_cards = copy.copy(cards)\n\nquick_sort(cards, 0, n-1)\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n for k in range(left, right):\n if num_from_card(L[i]) <= num_from_card(R[j]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = int((left + right)/2)\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\ncards = [input() for i in range(n)]\nmerge_cards = copy.copy(cards)\n\nquick_sort(cards, 0, n-1)\nmerge_sort(merge_cards, 0, n)\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n for k in range(left, right):\n if num_from_card(L[i]) <= num_from_card(R[j]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = int((left + right)/2)\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\ncards = [input() for i in range(n)]\nmerge_cards = copy.copy(cards)\n\nquick_sort(cards, 0, n-1)\nmerge_sort(merge_cards, 0, n)\n\nif merge_cards == cards:\n print('Stable')\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n for k in range(left, right):\n if num_from_card(L[i]) <= num_from_card(R[j]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = int((left + right)/2)\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\ncards = [input() for i in range(n)]\nmerge_cards = copy.copy(cards)\n\nquick_sort(cards, 0, n-1)\nmerge_sort(merge_cards, 0, n)\n\nif merge_cards == cards:\n print('Stable')\nelse:\n print('Not stable')\n", "import copy\n\ndef num_from_card(card):\n return int(card[2:])\n\ndef partition(A, p, r):\n x = num_from_card(A[r])\n i = p-1\n for j in range(p, r):\n if num_from_card(A[j]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quick_sort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quick_sort(A, p, q-1)\n quick_sort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L = A[left: mid]\n R = A[mid: right]\n L.append(' ' + str(int(10e9 + 1)))\n R.append(' ' + str(int(10e9 + 1)))\n i, j = 0, 0\n for k in range(left, right):\n if num_from_card(L[i]) <= num_from_card(R[j]):\n A[k] = L[i]\n i += 1\n else:\n A[k] = R[j]\n j += 1\n\ndef merge_sort(A, left, right):\n if left + 1 < right:\n mid = int((left + right)/2)\n merge_sort(A, left, mid)\n merge_sort(A, mid, right)\n merge(A, left, mid, right)\n\nn = int(input())\ncards = [input() for i in range(n)]\nmerge_cards = copy.copy(cards)\n\nquick_sort(cards, 0, n-1)\nmerge_sort(merge_cards, 0, n)\n\nif merge_cards == cards:\n print('Stable')\nelse:\n print('Not stable')\n\nfor c in cards:\n print(c)\n" ]
24
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import copy\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ndata = []\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ndata = []\nfor _ in range(n):\n mark, num = map(str, input().split())\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ndata = []\nfor _ in range(n):\n mark, num = map(str, input().split())\n data.append([mark, int(num)])\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ndata = []\nfor _ in range(n):\n mark, num = map(str, input().split())\n data.append([mark, int(num)])\ndata1 = copy.deepcopy(data)\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ndata = []\nfor _ in range(n):\n mark, num = map(str, input().split())\n data.append([mark, int(num)])\ndata1 = copy.deepcopy(data)\n\nquicksort(data, 0, n-1)\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ndata = []\nfor _ in range(n):\n mark, num = map(str, input().split())\n data.append([mark, int(num)])\ndata1 = copy.deepcopy(data)\n\nquicksort(data, 0, n-1)\n\nfor i in range(n-1):\n if data[i][1] == data[i+1][1]:\n if data1.index(data[i]) > data1.index(data[i+1]):\n print(\"Not stable\")\n break\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ndata = []\nfor _ in range(n):\n mark, num = map(str, input().split())\n data.append([mark, int(num)])\ndata1 = copy.deepcopy(data)\n\nquicksort(data, 0, n-1)\n\nfor i in range(n-1):\n if data[i][1] == data[i+1][1]:\n if data1.index(data[i]) > data1.index(data[i+1]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n", "import copy\n\n\ndef partition(A, p, r):\n x = A[r]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\n\nn = int(input())\ndata = []\nfor _ in range(n):\n mark, num = map(str, input().split())\n data.append([mark, int(num)])\ndata1 = copy.deepcopy(data)\n\nquicksort(data, 0, n-1)\n\nfor i in range(n-1):\n if data[i][1] == data[i+1][1]:\n if data1.index(data[i]) > data1.index(data[i+1]):\n print(\"Not stable\")\n break\nelse:\n print(\"Stable\")\n\nfor d in data:\n print(' '.join(str(dd) for dd in d))\n" ]
16
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "l_1 = []\n", "import copy\n\n\nl_1 = []\n", "import copy\n\ndef partition(A, p, r):\n \n i = p-1\n \n \nl_1 = []\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n \n \nl_1 = []\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n \n \nl_1 = []\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n \n\nl_1 = []\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\n\nl_1 = []\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\nl_1 = []\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef show(l):\n for i in range(len(l)):\n print(l[i][0], l[i][1], sep = ' ')\n\n\nl_1 = []\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef show(l):\n for i in range(len(l)):\n print(l[i][0], l[i][1], sep = ' ')\n\n\nn = int(input())\nl_1 = []\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef show(l):\n for i in range(len(l)):\n print(l[i][0], l[i][1], sep = ' ')\n\n\nn = int(input())\nl_1 = []\nfor _ in range(n):\n a = input().split()\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef show(l):\n for i in range(len(l)):\n print(l[i][0], l[i][1], sep = ' ')\n\n\nn = int(input())\nl_1 = []\nfor _ in range(n):\n a = input().split()\n l_1.append(a)\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef show(l):\n for i in range(len(l)):\n print(l[i][0], l[i][1], sep = ' ')\n\n\nn = int(input())\nl_1 = []\nfor _ in range(n):\n a = input().split()\n l_1.append(a)\nl_2 = copy.deepcopy(l_1)\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef show(l):\n for i in range(len(l)):\n print(l[i][0], l[i][1], sep = ' ')\n\n\nn = int(input())\nl_1 = []\nfor _ in range(n):\n a = input().split()\n l_1.append(a)\nl_2 = copy.deepcopy(l_1)\n\nquickSort(l_1, 0, n-1)\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef show(l):\n for i in range(len(l)):\n print(l[i][0], l[i][1], sep = ' ')\n\n\nn = int(input())\nl_1 = []\nfor _ in range(n):\n a = input().split()\n l_1.append(a)\nl_2 = copy.deepcopy(l_1)\n\nquickSort(l_1, 0, n-1)\n\nfor i in range(n-1):\n if int(l_1[i][1]) == int(l_1[i+1][1]):\n if l_2.index(l_1[i]) > l_2.index(l_1[i+1]):\n print('Not stable')\n break\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef show(l):\n for i in range(len(l)):\n print(l[i][0], l[i][1], sep = ' ')\n\n\nn = int(input())\nl_1 = []\nfor _ in range(n):\n a = input().split()\n l_1.append(a)\nl_2 = copy.deepcopy(l_1)\n\nquickSort(l_1, 0, n-1)\n\nfor i in range(n-1):\n if int(l_1[i][1]) == int(l_1[i+1][1]):\n if l_2.index(l_1[i]) > l_2.index(l_1[i+1]):\n print('Not stable')\n break\nelse:\n print('Stable')\n", "import copy\n\ndef partition(A, p, r):\n x = int(A[r][1])\n i = p-1\n for j in range(p, r):\n if int(A[j][1]) <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef show(l):\n for i in range(len(l)):\n print(l[i][0], l[i][1], sep = ' ')\n\n\nn = int(input())\nl_1 = []\nfor _ in range(n):\n a = input().split()\n l_1.append(a)\nl_2 = copy.deepcopy(l_1)\n\nquickSort(l_1, 0, n-1)\n\nfor i in range(n-1):\n if int(l_1[i][1]) == int(l_1[i+1][1]):\n if l_2.index(l_1[i]) > l_2.index(l_1[i+1]):\n print('Not stable')\n break\nelse:\n print('Stable')\n\nshow(l_1)\n" ]
18
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import sys\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x,y:(x,int(y))\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x,y:(x,int(y))\nA=[(*f(*e.split()),i)for i,e in enumerate(sys.stdin)]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x,y:(x,int(y))\nA=[(*f(*e.split()),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x,y:(x,int(y))\nA=[(*f(*e.split()),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\nfor e in[[s(A)+'table']]+A:print(*e[:2])\n" ]
12
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n \n i = p-1\n \n \nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n \n \nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n \n \nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n \n\nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\n\nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n \n \n i = 0\n j = 0\n\n \nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n \n i = 0\n j = 0\n\n \nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n \nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\n\nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n \n\nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n \n \nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n \n \nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n \n\nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\n\n\nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\n\nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\nn=int(input())\nA=[]\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\nn=int(input())\nA=[]\nfor i in range(n):\n Astr=input().split( )\n \n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\nn=int(input())\nA=[]\nfor i in range(n):\n Astr=input().split( )\n A.append([Astr[0],int(Astr[1])])\n\n\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\nn=int(input())\nA=[]\nfor i in range(n):\n Astr=input().split( )\n A.append([Astr[0],int(Astr[1])])\n\nB=A.copy()\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\nn=int(input())\nA=[]\nfor i in range(n):\n Astr=input().split( )\n A.append([Astr[0],int(Astr[1])])\n\nB=A.copy()\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\nquickSort(A,0,n-1)\n\n\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\nn=int(input())\nA=[]\nfor i in range(n):\n Astr=input().split( )\n A.append([Astr[0],int(Astr[1])])\n\nB=A.copy()\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\nquickSort(A,0,n-1)\n\nmergeSort(B,0,n)\n#print(*B)\nflag=0\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\nn=int(input())\nA=[]\nfor i in range(n):\n Astr=input().split( )\n A.append([Astr[0],int(Astr[1])])\n\nB=A.copy()\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\nquickSort(A,0,n-1)\n\nmergeSort(B,0,n)\n#print(*B)\nflag=0\nfor i in range(n):\n if A[i]!=B[i]:\n flag=1\n break\n else:\n pass\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\nn=int(input())\nA=[]\nfor i in range(n):\n Astr=input().split( )\n A.append([Astr[0],int(Astr[1])])\n\nB=A.copy()\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\nquickSort(A,0,n-1)\n\nmergeSort(B,0,n)\n#print(*B)\nflag=0\nfor i in range(n):\n if A[i]!=B[i]:\n flag=1\n break\n else:\n pass\nif flag==1:\n print(\"Not stable\")\n\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\nn=int(input())\nA=[]\nfor i in range(n):\n Astr=input().split( )\n A.append([Astr[0],int(Astr[1])])\n\nB=A.copy()\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\nquickSort(A,0,n-1)\n\nmergeSort(B,0,n)\n#print(*B)\nflag=0\nfor i in range(n):\n if A[i]!=B[i]:\n flag=1\n break\n else:\n pass\nif flag==1:\n print(\"Not stable\")\nelse:\n print(\"Stable\")\n\n#print(*A)\n#print(*B)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x:\n i = i+1\n A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\ndef merge(A, left, mid, right):\n L=A[left:mid]+[[\"X\",10000000000]]\n R=A[mid:right]+[[\"X\",10000000000]]\n i = 0\n j = 0\n\n for k in range(left,right):\n if L[i][1] <= R[j][1]:\n A[k] = L[i]\n i = i + 1\n else:\n A[k] = R[j]\n j = j + 1\n\ndef mergeSort(A, left, right):\n mid=0\n if left+1 < right:\n mid = int((left + right)/2)\n mergeSort(A, left, mid)\n mergeSort(A, mid, right)\n merge(A, left, mid, right)\nimport copy\nn=int(input())\nA=[]\nfor i in range(n):\n Astr=input().split( )\n A.append([Astr[0],int(Astr[1])])\n\nB=A.copy()\n#print(id(A)) # ID: 4315448960\n#print(id(B)) # ID: 4315448960\n\nquickSort(A,0,n-1)\n\nmergeSort(B,0,n)\n#print(*B)\nflag=0\nfor i in range(n):\n if A[i]!=B[i]:\n flag=1\n break\n else:\n pass\nif flag==1:\n print(\"Not stable\")\nelse:\n print(\"Stable\")\n\n#print(*A)\n#print(*B)\nfor i in range(n):\n print(*A[i])\n" ]
28
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\n\nl = []\n\n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n \n \n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\n\nl = []\n\n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n \n \n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\n\nl = []\n\n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n \n \n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\n\nl = []\n\n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n \n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\n\nl = []\n\n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\n\nl = []\n\n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\n\nl = []\n\n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\nn = int(input())\nl = []\n\n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\nn = int(input())\nl = []\n\nfor i in range(n):\n a, b = input().split()\n \n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\nn = int(input())\nl = []\n\nfor i in range(n):\n a, b = input().split()\n l.append((a, int(b)))\n\n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\nn = int(input())\nl = []\n\nfor i in range(n):\n a, b = input().split()\n l.append((a, int(b)))\n\nl1 = l.copy()\n\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\nn = int(input())\nl = []\n\nfor i in range(n):\n a, b = input().split()\n l.append((a, int(b)))\n\nl1 = l.copy()\nquick_sort(l1, 0, len(l) - 1)\n# print(l1)\n\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\nn = int(input())\nl = []\n\nfor i in range(n):\n a, b = input().split()\n l.append((a, int(b)))\n\nl1 = l.copy()\nquick_sort(l1, 0, len(l) - 1)\n# print(l1)\n\nl2 = l.copy()\n\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\nn = int(input())\nl = []\n\nfor i in range(n):\n a, b = input().split()\n l.append((a, int(b)))\n\nl1 = l.copy()\nquick_sort(l1, 0, len(l) - 1)\n# print(l1)\n\nl2 = l.copy()\nl2_sorted = sorted(l2, key=lambda x: x[1])\n# print(l2_sorted)\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\nn = int(input())\nl = []\n\nfor i in range(n):\n a, b = input().split()\n l.append((a, int(b)))\n\nl1 = l.copy()\nquick_sort(l1, 0, len(l) - 1)\n# print(l1)\n\nl2 = l.copy()\nl2_sorted = sorted(l2, key=lambda x: x[1])\n# print(l2_sorted)\n\nif l1 == l2_sorted:\n print(\"Stable\")\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\nn = int(input())\nl = []\n\nfor i in range(n):\n a, b = input().split()\n l.append((a, int(b)))\n\nl1 = l.copy()\nquick_sort(l1, 0, len(l) - 1)\n# print(l1)\n\nl2 = l.copy()\nl2_sorted = sorted(l2, key=lambda x: x[1])\n# print(l2_sorted)\n\nif l1 == l2_sorted:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "def partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p, r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[r], a[i + 1] = a[i + 1], a[r]\n return i + 1\n\n\ndef quick_sort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quick_sort(a, p, q - 1)\n quick_sort(a, q + 1, r)\n\n\n#\n# l = [int(i) for i in input().split()]\n# quick_sort(l, 0, len(l) - 1)\n# print(l)\n\nn = int(input())\nl = []\n\nfor i in range(n):\n a, b = input().split()\n l.append((a, int(b)))\n\nl1 = l.copy()\nquick_sort(l1, 0, len(l) - 1)\n# print(l1)\n\nl2 = l.copy()\nl2_sorted = sorted(l2, key=lambda x: x[1])\n# print(l2_sorted)\n\nif l1 == l2_sorted:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor x, y in l1:\n print(x, y)\n" ]
18
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "M = []\n", "import copy\n\n\nM = []\n", "import copy\n\n\nn = int(input())\nM = []\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n \n\n return r\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n\n\ndef partition(p, r):\n x = M[r][1]\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n\n\ndef partition(p, r):\n x = M[r][1]\n i = p - 1\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n\n\ndef partition(p, r):\n x = M[r][1]\n i = p - 1\n for k in range(p, r):\n if M[k][1] <= x:\n i += 1\n M[i], M[k] = M[k], M[i]\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n\n\ndef partition(p, r):\n x = M[r][1]\n i = p - 1\n for k in range(p, r):\n if M[k][1] <= x:\n i += 1\n M[i], M[k] = M[k], M[i]\n M[i + 1], M[r] = M[r], M[i + 1]\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n\n\ndef partition(p, r):\n x = M[r][1]\n i = p - 1\n for k in range(p, r):\n if M[k][1] <= x:\n i += 1\n M[i], M[k] = M[k], M[i]\n M[i + 1], M[r] = M[r], M[i + 1]\n return i + 1\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n\n\ndef partition(p, r):\n x = M[r][1]\n i = p - 1\n for k in range(p, r):\n if M[k][1] <= x:\n i += 1\n M[i], M[k] = M[k], M[i]\n M[i + 1], M[r] = M[r], M[i + 1]\n return i + 1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q - 1)\n quick_sort(q + 1, r)\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n\n\ndef partition(p, r):\n x = M[r][1]\n i = p - 1\n for k in range(p, r):\n if M[k][1] <= x:\n i += 1\n M[i], M[k] = M[k], M[i]\n M[i + 1], M[r] = M[r], M[i + 1]\n return i + 1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q - 1)\n quick_sort(q + 1, r)\n\n\nquick_sort(0, n - 1)\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n\n\ndef partition(p, r):\n x = M[r][1]\n i = p - 1\n for k in range(p, r):\n if M[k][1] <= x:\n i += 1\n M[i], M[k] = M[k], M[i]\n M[i + 1], M[r] = M[r], M[i + 1]\n return i + 1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q - 1)\n quick_sort(q + 1, r)\n\n\nquick_sort(0, n - 1)\n\nif group(_M) == group(M):\n print('Stable')\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n\n\ndef partition(p, r):\n x = M[r][1]\n i = p - 1\n for k in range(p, r):\n if M[k][1] <= x:\n i += 1\n M[i], M[k] = M[k], M[i]\n M[i + 1], M[r] = M[r], M[i + 1]\n return i + 1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q - 1)\n quick_sort(q + 1, r)\n\n\nquick_sort(0, n - 1)\n\nif group(_M) == group(M):\n print('Stable')\nelse:\n print('Not stable')\n", "import copy\n\n\nn = int(input())\nM = []\nfor _ in range(n):\n m = input().split()\n M.append([m[0], int(m[1])])\n\n_M = copy.deepcopy(M)\n\n\ndef group(arr):\n r = {}\n for a in arr:\n if r.get(a[1]):\n r[a[1]] += a[0]\n else:\n r[a[1]] = a[0]\n\n return r\n\n\ndef partition(p, r):\n x = M[r][1]\n i = p - 1\n for k in range(p, r):\n if M[k][1] <= x:\n i += 1\n M[i], M[k] = M[k], M[i]\n M[i + 1], M[r] = M[r], M[i + 1]\n return i + 1\n\n\ndef quick_sort(p, r):\n if p < r:\n q = partition(p, r)\n quick_sort(p, q - 1)\n quick_sort(q + 1, r)\n\n\nquick_sort(0, n - 1)\n\nif group(_M) == group(M):\n print('Stable')\nelse:\n print('Not stable')\n\nfor m in M:\n print(m[0], m[1])\n" ]
19
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n #S H C D\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n \n i = p-1\n \n \nA = []\n #S H C D\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n \n \nA = []\n #S H C D\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n \n \nA = []\n #S H C D\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n \n\nA = []\n #S H C D\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\n\nA = []\n #S H C D\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\n\nA = []\n #S H C D\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\n #S H C D\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n A.append((a,v))\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n A.append((a,v))\ncopya = A[:]\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n A.append((a,v))\ncopya = A[:]\nQuicksort(A, 0, n-1)\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n A.append((a,v))\ncopya = A[:]\nQuicksort(A, 0, n-1)\nAvdic = dict()\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n A.append((a,v))\ncopya = A[:]\nQuicksort(A, 0, n-1)\nAvdic = dict()\nfor a,v in A:\n if (v not in Avdic.keys()):\n Avdic[v] = [a]\n else:\n Avdic[v] += [a]\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n A.append((a,v))\ncopya = A[:]\nQuicksort(A, 0, n-1)\nAvdic = dict()\nfor a,v in A:\n if (v not in Avdic.keys()):\n Avdic[v] = [a]\n else:\n Avdic[v] += [a]\ncvdic = dict()\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n A.append((a,v))\ncopya = A[:]\nQuicksort(A, 0, n-1)\nAvdic = dict()\nfor a,v in A:\n if (v not in Avdic.keys()):\n Avdic[v] = [a]\n else:\n Avdic[v] += [a]\ncvdic = dict()\nfor a,v in copya:\n if (v not in cvdic.keys()):\n cvdic[v] = [a]\n else:\n cvdic[v] += [a]\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n A.append((a,v))\ncopya = A[:]\nQuicksort(A, 0, n-1)\nAvdic = dict()\nfor a,v in A:\n if (v not in Avdic.keys()):\n Avdic[v] = [a]\n else:\n Avdic[v] += [a]\ncvdic = dict()\nfor a,v in copya:\n if (v not in cvdic.keys()):\n cvdic[v] = [a]\n else:\n cvdic[v] += [a]\nif (Avdic == cvdic):\n print('Stable')\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n A.append((a,v))\ncopya = A[:]\nQuicksort(A, 0, n-1)\nAvdic = dict()\nfor a,v in A:\n if (v not in Avdic.keys()):\n Avdic[v] = [a]\n else:\n Avdic[v] += [a]\ncvdic = dict()\nfor a,v in copya:\n if (v not in cvdic.keys()):\n cvdic[v] = [a]\n else:\n cvdic[v] += [a]\nif (Avdic == cvdic):\n print('Stable')\nelse:\n print('Not stable')\n", "def Partition(A,p,r): ## r = n-1 (A의 p~r번째(0 base)요소를 partition!)\n x = A[r][1]\n i = p-1\n for j in range(p,r):\n if (A[j][1] <= x):\n i += 1\n A[i], A[j] = A[j], A[i]\n A[r], A[i+1] = A[i+1], A[r]\n return i+1\n\ndef Quicksort(A, p, r):\n if (p < r):\n q = Partition(A,p,r)\n Quicksort(A,p,q-1)\n Quicksort(A,q+1,r)\nn = int(input())\nA = []\ncolor = [[]for i in range(4)] #S H C D\nfor i in range(n):\n a,v = input().split()\n v = int(v)\n A.append((a,v))\ncopya = A[:]\nQuicksort(A, 0, n-1)\nAvdic = dict()\nfor a,v in A:\n if (v not in Avdic.keys()):\n Avdic[v] = [a]\n else:\n Avdic[v] += [a]\ncvdic = dict()\nfor a,v in copya:\n if (v not in cvdic.keys()):\n cvdic[v] = [a]\n else:\n cvdic[v] += [a]\nif (Avdic == cvdic):\n print('Stable')\nelse:\n print('Not stable')\nfor a in A:\n print(*a)\n" ]
22
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def partition(A, p, r):\n x = A[r][1]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\nn, *D = open(0).read().split()\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\nn, *D = open(0).read().split()\nn = int(n)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\nn, *D = open(0).read().split()\nn = int(n)\nA = [(D[2 * i], int(D[2 * i + 1]), i) for i in range(n)]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\nn, *D = open(0).read().split()\nn = int(n)\nA = [(D[2 * i], int(D[2 * i + 1]), i) for i in range(n)]\nquicksort(A, 0, n - 1)\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\nn, *D = open(0).read().split()\nn = int(n)\nA = [(D[2 * i], int(D[2 * i + 1]), i) for i in range(n)]\nquicksort(A, 0, n - 1)\nstable = True\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\nn, *D = open(0).read().split()\nn = int(n)\nA = [(D[2 * i], int(D[2 * i + 1]), i) for i in range(n)]\nquicksort(A, 0, n - 1)\nstable = True\nfor i in range(n-1):\n if A[i][1] == A[i + 1][1] and A[i][2] > A[i + 1][2]:\n stable = False\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\nn, *D = open(0).read().split()\nn = int(n)\nA = [(D[2 * i], int(D[2 * i + 1]), i) for i in range(n)]\nquicksort(A, 0, n - 1)\nstable = True\nfor i in range(n-1):\n if A[i][1] == A[i + 1][1] and A[i][2] > A[i + 1][2]:\n stable = False\nprint('Stable' if stable else 'Not stable')\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\nn, *D = open(0).read().split()\nn = int(n)\nA = [(D[2 * i], int(D[2 * i + 1]), i) for i in range(n)]\nquicksort(A, 0, n - 1)\nstable = True\nfor i in range(n-1):\n if A[i][1] == A[i + 1][1] and A[i][2] > A[i + 1][2]:\n stable = False\nprint('Stable' if stable else 'Not stable')\nA = [(a[0], a[1]) for a in A]\n", "def partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r] = A[r], A[i + 1]\n return i + 1\n\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q - 1)\n quicksort(A, q + 1, r)\n\n\nn, *D = open(0).read().split()\nn = int(n)\nA = [(D[2 * i], int(D[2 * i + 1]), i) for i in range(n)]\nquicksort(A, 0, n - 1)\nstable = True\nfor i in range(n-1):\n if A[i][1] == A[i + 1][1] and A[i][2] > A[i + 1][2]:\n stable = False\nprint('Stable' if stable else 'Not stable')\nA = [(a[0], a[1]) for a in A]\nprint('\\n'.join(map(lambda x: ' '.join(map(str, x)), A)))\n" ]
16
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "from collections import defaultdict\n\nn=int(input())\n\nA=[0]*n\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n\nquicksort(A,inds,0,n-1)\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n\nquicksort(A,inds,0,n-1)\n\nstable_flag=True\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n\nquicksort(A,inds,0,n-1)\n\nstable_flag=True\nfor i in range(n):\n num_i=cards[inds[i]][1]\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n\nquicksort(A,inds,0,n-1)\n\nstable_flag=True\nfor i in range(n):\n num_i=cards[inds[i]][1]\n suit=cards[inds[i]][0]\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n\nquicksort(A,inds,0,n-1)\n\nstable_flag=True\nfor i in range(n):\n num_i=cards[inds[i]][1]\n suit=cards[inds[i]][0]\n\n if d[num_i][di[num_i]] != suit:\n \n break\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n\nquicksort(A,inds,0,n-1)\n\nstable_flag=True\nfor i in range(n):\n num_i=cards[inds[i]][1]\n suit=cards[inds[i]][0]\n\n if d[num_i][di[num_i]] != suit:\n stable_flag=False\n break\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n\nquicksort(A,inds,0,n-1)\n\nstable_flag=True\nfor i in range(n):\n num_i=cards[inds[i]][1]\n suit=cards[inds[i]][0]\n\n if d[num_i][di[num_i]] != suit:\n stable_flag=False\n break\n di[num_i]+=1\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n\nquicksort(A,inds,0,n-1)\n\nstable_flag=True\nfor i in range(n):\n num_i=cards[inds[i]][1]\n suit=cards[inds[i]][0]\n\n if d[num_i][di[num_i]] != suit:\n stable_flag=False\n break\n di[num_i]+=1\n\nif stable_flag:\n print(\"Stable\")\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n\nquicksort(A,inds,0,n-1)\n\nstable_flag=True\nfor i in range(n):\n num_i=cards[inds[i]][1]\n suit=cards[inds[i]][0]\n\n if d[num_i][di[num_i]] != suit:\n stable_flag=False\n break\n di[num_i]+=1\n\nif stable_flag:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n", "from collections import defaultdict\n\nn=int(input())\ncards=[0]*n\nA=[0]*n\ninds=[0]*n\nd=defaultdict(lambda :[])\ndi=defaultdict(int)\nfor i in range(n):\n tmp=input().split()\n cards[i]=tmp[0],int(tmp[1])\n A[i]=int(tmp[1])\n inds[i]=i\n d[int(tmp[1])].append(tmp[0])\n\ndef partition(A,inds,p,r):\n x=A[r]\n i=p-1\n for j in range(p,r):\n if A[j] <= x:\n i+=1\n A[i],A[j]=A[j],A[i]\n inds[i],inds[j]=inds[j],inds[i]\n A[i+1],A[r]=A[r],A[i+1]\n inds[i+1],inds[r]=inds[r],inds[i+1]\n return i+1\n\ndef quicksort(A,inds,p,r):\n if p < r:\n q=partition(A,inds,p,r)\n quicksort(A,inds,p,q-1)\n quicksort(A,inds,q+1,r)\n\nquicksort(A,inds,0,n-1)\n\nstable_flag=True\nfor i in range(n):\n num_i=cards[inds[i]][1]\n suit=cards[inds[i]][0]\n\n if d[num_i][di[num_i]] != suit:\n stable_flag=False\n break\n di[num_i]+=1\n\nif stable_flag:\n print(\"Stable\")\nelse:\n print(\"Not stable\")\n\nfor i in range(n):\n print(*cards[inds[i]])\n" ]
27
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import sys\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x,y:(x,int(y))\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x,y:(x,int(y))\nA=[(*f(*e.split()),i)for i,e in enumerate(sys.stdin)]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x,y:(x,int(y))\nA=[(*f(*e.split()),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x,y:(x,int(y))\nA=[(*f(*e.split()),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\nfor e in[[s(A)+'table']]+A:print(*e[:2])\n" ]
12
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import sys\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef isStable(A):\n for i in range(0, len(A)-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return False\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef isStable(A):\n for i in range(0, len(A)-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return False\n return True\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef isStable(A):\n for i in range(0, len(A)-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return False\n return True\n\nif __name__ == \"__main__\":\n \n B = []\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef isStable(A):\n for i in range(0, len(A)-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return False\n return True\n\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n B = []\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef isStable(A):\n for i in range(0, len(A)-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return False\n return True\n\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n B = []\n for i in range(n):\n c = sys.stdin.readline().split()\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef isStable(A):\n for i in range(0, len(A)-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return False\n return True\n\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n B = []\n for i in range(n):\n c = sys.stdin.readline().split()\n B.append([c[0], int(c[1]), i])\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef isStable(A):\n for i in range(0, len(A)-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return False\n return True\n\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n B = []\n for i in range(n):\n c = sys.stdin.readline().split()\n B.append([c[0], int(c[1]), i])\n quickSort(B, 0, n-1)\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef isStable(A):\n for i in range(0, len(A)-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return False\n return True\n\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n B = []\n for i in range(n):\n c = sys.stdin.readline().split()\n B.append([c[0], int(c[1]), i])\n quickSort(B, 0, n-1)\n if isStable(B):\n print(\"Stable\")\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef isStable(A):\n for i in range(0, len(A)-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return False\n return True\n\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n B = []\n for i in range(n):\n c = sys.stdin.readline().split()\n B.append([c[0], int(c[1]), i])\n quickSort(B, 0, n-1)\n if isStable(B):\n print(\"Stable\")\n else:\n print(\"Not stable\")\n", "import sys\n\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i = i + 1\n temp = A[i]\n A[i] = A[j]\n A[j] = temp\n temp = A[i+1]\n A[i+1] = A[r]\n A[r] = temp\n return i+1\n\n\ndef quickSort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quickSort(A, p, q-1)\n quickSort(A, q+1, r)\n\n\ndef isStable(A):\n for i in range(0, len(A)-1):\n if A[i][1] == A[i+1][1]:\n if A[i][2] > A[i+1][2]:\n return False\n return True\n\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n B = []\n for i in range(n):\n c = sys.stdin.readline().split()\n B.append([c[0], int(c[1]), i])\n quickSort(B, 0, n-1)\n if isStable(B):\n print(\"Stable\")\n else:\n print(\"Not stable\")\n for b in B:\n print(b[0], b[1])\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import sys\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x:(x[0],int(x[1]),x[2])\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x:(x[0],int(x[1]),x[2])\nA=[(*e.split(),i)for i,e in enumerate(sys.stdin)]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x:(x[0],int(x[1]),x[2])\nA=[(*e.split(),i)for i,e in enumerate(sys.stdin)]\nA=list(map(f,A))\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x:(x[0],int(x[1]),x[2])\nA=[(*e.split(),i)for i,e in enumerate(sys.stdin)]\nA=list(map(f,A))\nk(A,0,n-1)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]:\n if A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nf=lambda x:(x[0],int(x[1]),x[2])\nA=[(*e.split(),i)for i,e in enumerate(sys.stdin)]\nA=list(map(f,A))\nk(A,0,n-1)\nfor e in[[s(A)+'table']]+A:print(*e[:2])\n" ]
13
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "import sys\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\nprint(s(A)+'table')\n", "import sys\ndef t(A,p,r):\n x=A[r][1];i=p-1\n for j in range(p,r):\n if A[j][1]<=x:i+=1;A[i],A[j]=A[j],A[i]\n A[i+1],A[r]=A[r],A[i+1]\n return i+1\ndef k(A,p,r):\n if p<r:q=t(A,p,r);k(A,p,q-1);k(A,q+1,r)\ndef s(A):\n for i in range(n-1):\n if A[i][1]==A[i+1][1]and A[i][2]>A[i+1][2]:return'Not s'\n return'S'\nn=int(input())\nA=[(e[0],int(e[2:]),i)for i,e in enumerate(sys.stdin)]\nk(A,0,n-1)\nprint(s(A)+'table')\nprint(\"\\n\".join(f\"{a} {b}\" for a, b, c in A))\n" ]
12
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "a = []\n\n\nb = a[:]\n", "n = int(input())\na = []\n\n\nb = a[:]\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n \n\nb = a[:]\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p,r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p,r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p,r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p,r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p,r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\ndef checkStable(a):\n for i in range(len(a) - 1):\n if a[i][1] == a[i + 1][1] and a[i][2] > a[i + 1][2]:\n return \"Not stable\"\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p,r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\ndef checkStable(a):\n for i in range(len(a) - 1):\n if a[i][1] == a[i + 1][1] and a[i][2] > a[i + 1][2]:\n return \"Not stable\"\n return \"Stable\"\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p,r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\ndef checkStable(a):\n for i in range(len(a) - 1):\n if a[i][1] == a[i + 1][1] and a[i][2] > a[i + 1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nquickSort(a, 0, n - 1)\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p,r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\ndef checkStable(a):\n for i in range(len(a) - 1):\n if a[i][1] == a[i + 1][1] and a[i][2] > a[i + 1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nquickSort(a, 0, n - 1)\n\nprint(checkStable(a))\n", "n = int(input())\na = []\nfor i in range(n):\n suit, num = input().split()\n a.append([suit, int(num), int(i)])\n\nb = a[:]\n\ndef partition(a, p, r):\n x = a[r][1]\n i = p - 1\n for j in range(p,r):\n if a[j][1] <= x:\n i += 1\n a[i], a[j] = a[j], a[i]\n a[i + 1], a[r] = a[r], a[i + 1]\n return i + 1\n\ndef quickSort(a, p, r):\n if p < r:\n q = partition(a, p, r)\n quickSort(a, p, q - 1)\n quickSort(a, q + 1, r)\n\ndef checkStable(a):\n for i in range(len(a) - 1):\n if a[i][1] == a[i + 1][1] and a[i][2] > a[i + 1][2]:\n return \"Not stable\"\n return \"Stable\"\n\nquickSort(a, 0, n - 1)\n\nprint(checkStable(a))\nfor a_i in a:\n print(a_i[0],a_i[1])\n" ]
16
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\nif __name__ == '__main__':\n n = int(input())\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\nif __name__ == '__main__':\n n = int(input())\n cards = list()\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\nif __name__ == '__main__':\n n = int(input())\n cards = list()\n for i in range(n):\n card = input().split()\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\nif __name__ == '__main__':\n n = int(input())\n cards = list()\n for i in range(n):\n card = input().split()\n card[1] = int(card[1])\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\nif __name__ == '__main__':\n n = int(input())\n cards = list()\n for i in range(n):\n card = input().split()\n card[1] = int(card[1])\n cards.append(card)\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\nif __name__ == '__main__':\n n = int(input())\n cards = list()\n for i in range(n):\n card = input().split()\n card[1] = int(card[1])\n cards.append(card)\n before_cards = list(cards)\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\nif __name__ == '__main__':\n n = int(input())\n cards = list()\n for i in range(n):\n card = input().split()\n card[1] = int(card[1])\n cards.append(card)\n before_cards = list(cards)\n quicksort(cards, 0, n-1)\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\nif __name__ == '__main__':\n n = int(input())\n cards = list()\n for i in range(n):\n card = input().split()\n card[1] = int(card[1])\n cards.append(card)\n before_cards = list(cards)\n quicksort(cards, 0, n-1)\n print('Stable') if is_stable(before_cards, cards) else print('Not stable')\n", "def is_stable(before_sort, after_sort):\n current_num = 0\n same_number_card = list()\n for num in after_sort:\n if current_num == int(num[1]):\n for same_card in same_number_card:\n if before_sort.index(same_card) > before_sort.index(num):\n return False\n same_number_card.append(num)\n else:\n current_num = int(num[1])\n same_number_card = [num,]\n return True\n\ndef partition(A, p, r):\n x = A[r][1]\n i = p - 1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i + 1\n\ndef quicksort(A, p, r):\n if p < r:\n q = partition(A, p, r)\n quicksort(A, p, q-1)\n quicksort(A, q+1, r)\n\nif __name__ == '__main__':\n n = int(input())\n cards = list()\n for i in range(n):\n card = input().split()\n card[1] = int(card[1])\n cards.append(card)\n before_cards = list(cards)\n quicksort(cards, 0, n-1)\n print('Stable') if is_stable(before_cards, cards) else print('Not stable')\n for card in cards:\n print(*card)\n" ]
20
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "cc=[]\n", "import sys\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n \n i = p-1\n \n \ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n \n \ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n \n \ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n \n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n \n return A\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n \n \n return A\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n \n return A\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n \n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\n\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\n\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\nfor k in nn:\n \n \n a=[]\n b=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\nfor k in nn:\n if k in cc: continue\n \n \n a=[]\n b=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\nfor k in nn:\n if k in cc: continue\n cc.append(k)\n \n a=[]\n b=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\nfor k in nn:\n if k in cc: continue\n cc.append(k)\n if nn.count(k)<=1: continue\n a=[]\n b=[]\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\nfor k in nn:\n if k in cc: continue\n cc.append(k)\n if nn.count(k)<=1: continue\n a=[]\n b=[]\n for o in orig:\n if o[1]==k: a.append(o[0])\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\nfor k in nn:\n if k in cc: continue\n cc.append(k)\n if nn.count(k)<=1: continue\n a=[]\n b=[]\n for o in orig:\n if o[1]==k: a.append(o[0])\n for p in cards:\n if p[1]==k: b.append(p[0])\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\nfor k in nn:\n if k in cc: continue\n cc.append(k)\n if nn.count(k)<=1: continue\n a=[]\n b=[]\n for o in orig:\n if o[1]==k: a.append(o[0])\n for p in cards:\n if p[1]==k: b.append(p[0])\n if a!=b:\n \n break\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\nfor k in nn:\n if k in cc: continue\n cc.append(k)\n if nn.count(k)<=1: continue\n a=[]\n b=[]\n for o in orig:\n if o[1]==k: a.append(o[0])\n for p in cards:\n if p[1]==k: b.append(p[0])\n if a!=b:\n print('Not stable')\n break\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\nfor k in nn:\n if k in cc: continue\n cc.append(k)\n if nn.count(k)<=1: continue\n a=[]\n b=[]\n for o in orig:\n if o[1]==k: a.append(o[0])\n for p in cards:\n if p[1]==k: b.append(p[0])\n if a!=b:\n print('Not stable')\n break\nelse:\n print('Stable')\n", "import sys\n\ndef Partition(A, p, r):\n x = A[r][1]\n i = p-1\n for j in range(p, r):\n if A[j][1] <= x:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i+1], A[r] = A[r], A[i+1]\n return i+1, A\n\n\ndef Quicksort(A, p, r):\n if p < r:\n q, A = Partition(A, p, r)\n A = Quicksort(A, p, q-1)\n A = Quicksort(A, q+1, r)\n return A\n\nn = int(sys.stdin.readline())\ncards = []\nfor _ in range(n):\n s,t = sys.stdin.readline().split()\n cards.append([s, int(t)])\n\norig = cards[:]\nQuicksort(cards, 0, n-1)\nmm=[c[0] for c in cards]\nnn=[c[1] for c in cards]\ncc=[]\nfor k in nn:\n if k in cc: continue\n cc.append(k)\n if nn.count(k)<=1: continue\n a=[]\n b=[]\n for o in orig:\n if o[1]==k: a.append(o[0])\n for p in cards:\n if p[1]==k: b.append(p[0])\n if a!=b:\n print('Not stable')\n break\nelse:\n print('Stable')\n\nfor c in cards:\n print(c[0],c[1])\n" ]
30
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "A = []\n", "def partition(A, l, r):\n x = A[r - 1]\n \n \nA = []\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n \n \nA = []\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n \n \nA = []\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n \n\nA = []\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\nA = []\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nA = []\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\ndct0 = {}\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\ndct0 = {}\nfor a in A:\n dct0[a[1]] = []\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\ndct0 = {}\nfor a in A:\n dct0[a[1]] = []\nfor a in A:\n dct0[a[1]].append(a[0])\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\ndct0 = {}\nfor a in A:\n dct0[a[1]] = []\nfor a in A:\n dct0[a[1]].append(a[0])\nquick_sort(A, 0, n)\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\ndct0 = {}\nfor a in A:\n dct0[a[1]] = []\nfor a in A:\n dct0[a[1]].append(a[0])\nquick_sort(A, 0, n)\ndct1 = {}\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\ndct0 = {}\nfor a in A:\n dct0[a[1]] = []\nfor a in A:\n dct0[a[1]].append(a[0])\nquick_sort(A, 0, n)\ndct1 = {}\nfor a in A:\n dct1[a[1]] = []\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\ndct0 = {}\nfor a in A:\n dct0[a[1]] = []\nfor a in A:\n dct0[a[1]].append(a[0])\nquick_sort(A, 0, n)\ndct1 = {}\nfor a in A:\n dct1[a[1]] = []\nfor a in A:\n dct1[a[1]].append(a[0])\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\ndct0 = {}\nfor a in A:\n dct0[a[1]] = []\nfor a in A:\n dct0[a[1]].append(a[0])\nquick_sort(A, 0, n)\ndct1 = {}\nfor a in A:\n dct1[a[1]] = []\nfor a in A:\n dct1[a[1]].append(a[0])\nif dct0 == dct1:\n print('Stable')\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\ndct0 = {}\nfor a in A:\n dct0[a[1]] = []\nfor a in A:\n dct0[a[1]].append(a[0])\nquick_sort(A, 0, n)\ndct1 = {}\nfor a in A:\n dct1[a[1]] = []\nfor a in A:\n dct1[a[1]].append(a[0])\nif dct0 == dct1:\n print('Stable')\nelse:\n print('Not stable')\n", "def partition(A, l, r):\n x = A[r - 1]\n i = l - 1\n for j in range(l, r - 1):\n if A[j][1] <= x[1]:\n i += 1\n A[i], A[j] = A[j], A[i]\n A[i + 1], A[r - 1] = A[r - 1], A[i + 1]\n return i + 1\n\n\ndef quick_sort(A, l, r):\n if r - l > 1:\n q = partition(A, l, r)\n quick_sort(A, l, q)\n quick_sort(A, q, r)\n\n\nn = int(input())\nA = []\nfor i in range(n):\n a, b = input().split()\n A.append((a, int(b)))\ndct0 = {}\nfor a in A:\n dct0[a[1]] = []\nfor a in A:\n dct0[a[1]].append(a[0])\nquick_sort(A, 0, n)\ndct1 = {}\nfor a in A:\n dct1[a[1]] = []\nfor a in A:\n dct1[a[1]].append(a[0])\nif dct0 == dct1:\n print('Stable')\nelse:\n print('Not stable')\nfor a in A:\n print(*a)\n" ]
21
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]
0/::0
Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode: Partition(A, p, r) 1 x = A[r] 2 i = p-1 3 for j = p to r-1 4 do if A[j] <= x 5 then i = i+1 6 exchange A[i] and A[j] 7 exchange A[i+1] and A[r] 8 return i+1 Quicksort(A, p, r) 1 if p < r 2 then q = Partition(A, p, r) 3 run Quicksort(A, p, q-1) 4 run Quicksort(A, q+1, r) Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers. Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance). Constraints * 1 ≤ n ≤ 100,000 * 1 ≤ the number of a card ≤ 109 * There are no identical card in the input Input The first line contains an integer n, the number of cards. n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space. Output In the first line, print the stability ("Stable" or "Not stable") of this output. In the following lines, print the arranged cards in the same manner of that of the input. Examples Input 6 D 3 H 2 D 1 S 3 D 2 C 1 Output Not stable D 1 C 1 D 2 H 2 D 3 S 3 Input 2 S 1 H 1 Output Stable S 1 H 1
[ "\n", "def swap(A,i,j):\n \n return A\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n \n x = A[r]\n i = p-1\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n quick(A,q+1,r)\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n quick(A,q+1,r)\n\nimport sys\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n quick(A,q+1,r)\n\nimport sys\nif __name__ == \"__main__\":\n \n A = []\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n quick(A,q+1,r)\n\nimport sys\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n A = []\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n quick(A,q+1,r)\n\nimport sys\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n A = []\n for i in range(n):\n card = sys.stdin.readline().split()\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n quick(A,q+1,r)\n\nimport sys\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n A = []\n for i in range(n):\n card = sys.stdin.readline().split()\n A.append([card[0], int(card[1]), i])\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n quick(A,q+1,r)\n\nimport sys\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n A = []\n for i in range(n):\n card = sys.stdin.readline().split()\n A.append([card[0], int(card[1]), i])\n quick(A,0,n-1)\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n quick(A,q+1,r)\n\nimport sys\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n A = []\n for i in range(n):\n card = sys.stdin.readline().split()\n A.append([card[0], int(card[1]), i])\n quick(A,0,n-1)\n if isStable(A):\n print(\"Stable\")\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n quick(A,q+1,r)\n\nimport sys\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n A = []\n for i in range(n):\n card = sys.stdin.readline().split()\n A.append([card[0], int(card[1]), i])\n quick(A,0,n-1)\n if isStable(A):\n print(\"Stable\")\n else:\n print(\"Not stable\")\n", "def swap(A,i,j):\n A[i],A[j] = A[j],A[i]\n return A\n\ndef isStable(A):\n for i in range(1, len(A)):\n if A[i][1] == A[i-1][1]:\n if A[i][2] < A[i-1][2]:\n return False\n return True\n\ndef partition(A,p=0, r=None):\n if r is None:\n r = len(A)-1\n x = A[r]\n i = p-1\n for j in range(p,r):\n if A[j][1] <= x[1]:\n i += 1\n swap(A,i,j)\n swap(A,i+1,r)\n return i+1\n\ndef quick(A,p=0,r=None):\n if r is None:\n r = len(A)-1\n if p < r:\n q = partition(A,p,r)\n quick(A,p,q-1)\n quick(A,q+1,r)\n\nimport sys\nif __name__ == \"__main__\":\n n = int(sys.stdin.readline())\n A = []\n for i in range(n):\n card = sys.stdin.readline().split()\n A.append([card[0], int(card[1]), i])\n quick(A,0,n-1)\n if isStable(A):\n print(\"Stable\")\n else:\n print(\"Not stable\")\n for card in A:\n print(card[0], card[1])\n" ]
23
[ { "input": "2\nS 1\nH 1", "output": "Stable\nS 1\nH 1" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nD 2\nH 2\nD 3\nS 3" } ]
[ { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nD 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 1\nH 2", "output": "Stable\nS 1\nH 2\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nD 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 3\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nH 3\nD 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Not stable\nC 2\nC 2\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nS 4\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nD 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nH 3\nS 3\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Not stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nC 2", "output": "Not stable\nD 0\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 3\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nC 3\nD 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nD 3\nC 3\nS 4\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 2\nC 2", "output": "Stable\nH 1\nC 2\nC 2\nC 2\nD 3\nS 4\n" }, { "input": "2\nS 0\nH 1", "output": "Stable\nS 0\nH 1\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nD 2\nC 2", "output": "Stable\nD 1\nH 2\nD 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nD 1\nH 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 2\nD 0\nS 3\nD 2\nC 0", "output": "Not stable\nD 0\nC 0\nD 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nD 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nC 2\nC 2", "output": "Not stable\nD 1\nC 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 2\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nC 0\nH 2\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nS 3\nH 3\nD 5\n" }, { "input": "6\nD 2\nH 5\nC 2\nS 3\nC 2\nC 3", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 1", "output": "Stable\nC 0\nC 1\nC 1\nH 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nD 3\nS 4\nC 8\n" }, { "input": "6\nD 2\nH 5\nC 3\nS 3\nC 2\nC 3", "output": "Not stable\nD 2\nC 2\nS 3\nC 3\nC 3\nH 5\n" }, { "input": "6\nC 3\nH 1\nC 2\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nC 3\nC 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nC 1\nD 2\nC 2\nC 2\nS 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 5\nS 4\nC 3\nC 1", "output": "Not stable\nH 1\nC 1\nC 3\nD 3\nS 4\nC 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 1\nC 2\nC 2", "output": "Not stable\nH 1\nS 1\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 4\nH 2\nD 0\nS 3\nC 2\nC 1", "output": "Not stable\nD 0\nC 1\nC 2\nH 2\nS 3\nD 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 3\nC 2\nC 0", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 2", "output": "Not stable\nD 1\nD 2\nC 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 5\nH 0\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH 0\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 1", "output": "Stable\nC 0\nC 1\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 3\nC 1\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nS 3\nD 8\n" }, { "input": "6\nD 3\nH 0\nC 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nC 4\nS 8\n" }, { "input": "6\nD 6\nH 0\nD 1\nS 4\nC 8\nC 1", "output": "Stable\nH 0\nD 1\nC 1\nS 4\nD 6\nC 8\n" }, { "input": "6\nC 3\nH 1\nC 4\nS 4\nC 3\nC 1", "output": "Stable\nH 1\nC 1\nC 3\nC 3\nC 4\nS 4\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 2\nC 2\nC 2", "output": "Not stable\nH 1\nS 2\nC 2\nC 2\nC 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nC 4\nS 4\nC 2\nD 1", "output": "Stable\nH 1\nD 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 1\nC 2\nC 0", "output": "Not stable\nC 0\nS 1\nD 2\nH 2\nC 2\nD 3\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 4", "output": "Stable\nD 1\nD 2\nD 3\nS 3\nH 4\nC 4\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 5\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 5\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC 0", "output": "Stable\nC 0\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nD 8\nH 2\nC 0\nS 1\nC 1\nC 2", "output": "Stable\nC 0\nS 1\nC 1\nH 2\nC 2\nD 8\n" }, { "input": "6\nD 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nD 3\nD 4\nS 8\n" }, { "input": "6\nD 2\nH 2\nC 1\nS 5\nC 2\nC 2", "output": "Not stable\nC 1\nH 2\nD 2\nC 2\nC 2\nS 5\n" }, { "input": "6\nD 3\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 3\n" }, { "input": "6\nD 5\nH -1\nC 0\nS 7\nC 2\nC 2", "output": "Stable\nH -1\nC 0\nC 2\nC 2\nD 5\nS 7\n" }, { "input": "6\nD 5\nH 3\nC 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nC 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 4\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 2\nC 3\nD 4\nS 8\n" }, { "input": "6\nD 5\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 5\n" }, { "input": "6\nD 5\nH 3\nD 0\nS 6\nC 2\nC -1", "output": "Stable\nC -1\nD 0\nC 2\nH 3\nD 5\nS 6\n" }, { "input": "6\nC 3\nH 0\nD 2\nS 8\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nD 2\nC 2\nC 3\nS 8\n" }, { "input": "6\nD 8\nH 2\nD 2\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nD 2\nS 2\nC 2\nD 8\n" }, { "input": "6\nD 8\nH 2\nD 4\nS 2\nC 2\nC 0", "output": "Stable\nC 0\nH 2\nS 2\nC 2\nD 4\nD 8\n" }, { "input": "6\nD 3\nH 2\nD 1\nS 2\nD 2\nC 1", "output": "Not stable\nD 1\nC 1\nS 2\nD 2\nH 2\nD 3\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nC 2\nC 1", "output": "Not stable\nC 0\nC 1\nC 2\nH 2\nD 3\nS 3\n" }, { "input": "6\nD 3\nH 2\nC 1\nS 3\nC 0\nC 2", "output": "Stable\nC 0\nC 1\nH 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 0\nH 2\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nD 0\nC 1\nH 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 7\nH 2\nC 2\nS 3\nC 2\nC 2", "output": "Stable\nH 2\nC 2\nC 2\nC 2\nS 3\nD 7\n" }, { "input": "6\nD 5\nH 0\nC 1\nS 3\nC 2\nC 1", "output": "Stable\nH 0\nC 1\nC 1\nC 2\nS 3\nD 5\n" }, { "input": "2\nS 2\nH 2", "output": "Stable\nS 2\nH 2\n" }, { "input": "6\nD 3\nH 4\nD 1\nS 3\nD 2\nC 0", "output": "Not stable\nC 0\nD 1\nD 2\nS 3\nD 3\nH 4\n" }, { "input": "6\nD 3\nH 0\nC 1\nS 3\nC 2\nC 2", "output": "Stable\nH 0\nC 1\nC 2\nC 2\nD 3\nS 3\n" }, { "input": "6\nD 5\nH 1\nC 0\nS 3\nC 2\nC 2", "output": "Stable\nC 0\nH 1\nC 2\nC 2\nS 3\nD 5\n" }, { "input": "6\nD 5\nH 3\nC 2\nS 3\nC 2\nC 4", "output": "Not stable\nC 2\nC 2\nS 3\nH 3\nC 4\nD 5\n" }, { "input": "6\nD 2\nH 2\nC 0\nS 3\nC 2\nC 2", "output": "Not stable\nC 0\nH 2\nD 2\nC 2\nC 2\nS 3\n" }, { "input": "6\nD 2\nH 3\nC 4\nS 3\nC 2\nC 2", "output": "Not stable\nD 2\nC 2\nC 2\nS 3\nH 3\nC 4\n" }, { "input": "6\nD 5\nH 2\nC -1\nS 3\nC 1\nC 1", "output": "Stable\nC -1\nC 1\nC 1\nH 2\nS 3\nD 5\n" }, { "input": "6\nD 3\nH 0\nD 1\nS 4\nD 4\nC 1", "output": "Not stable\nH 0\nD 1\nC 1\nD 3\nD 4\nS 4\n" }, { "input": "6\nD 3\nH 2\nC 0\nS 3\nD 1\nC 1", "output": "Not stable\nC 0\nD 1\nC 1\nH 2\nS 3\nD 3\n" }, { "input": "6\nD 3\nH 1\nD 2\nS 4\nC 2\nC 1", "output": "Stable\nH 1\nC 1\nD 2\nC 2\nD 3\nS 4\n" }, { "input": "6\nD 2\nH 5\nC 6\nS 3\nC 2\nC 2", "output": "Stable\nD 2\nC 2\nC 2\nS 3\nH 5\nC 6\n" }, { "input": "6\nD 3\nH 1\nC 2\nS 4\nC 4\nC 1", "output": "Not stable\nH 1\nC 1\nC 2\nD 3\nC 4\nS 4\n" }, { "input": "6\nD 1\nH 5\nC 3\nS 3\nC 2\nC 1", "output": "Not stable\nD 1\nC 1\nC 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 0\nH 5\nC 3\nS 3\nC 2\nD 2", "output": "Not stable\nD 0\nC 2\nD 2\nS 3\nC 3\nH 5\n" }, { "input": "6\nD 3\nH 1\nC 3\nS 4\nC 5\nC 2", "output": "Not stable\nH 1\nC 2\nC 3\nD 3\nS 4\nC 5\n" } ]