bert-recipe-lora

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0002
  • Accuracy: 1.0
  • Precision: 1.0
  • Recall: 1.0
  • Macro F1: 1.0
  • Roc Auc: 1.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Macro F1 Roc Auc
0.0004 1.0 975 0.0036 0.9993 1.0 0.9991 0.9989 1.0000
0.0002 2.0 1950 0.0002 1.0 1.0 1.0 1.0 1.0000
0.0001 3.0 2925 0.0022 0.9997 1.0 0.9996 0.9995 1.0

Framework versions

  • PEFT 0.17.1
  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for juhy0987/bert-recipe-lora

Adapter
(14)
this model

Evaluation results