bert-recipe-lora
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0002
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- Macro F1: 1.0
- Roc Auc: 1.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Macro F1 | Roc Auc |
|---|---|---|---|---|---|---|---|---|
| 0.0004 | 1.0 | 975 | 0.0036 | 0.9993 | 1.0 | 0.9991 | 0.9989 | 1.0000 |
| 0.0002 | 2.0 | 1950 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0000 |
| 0.0001 | 3.0 | 2925 | 0.0022 | 0.9997 | 1.0 | 0.9996 | 0.9995 | 1.0 |
Framework versions
- PEFT 0.17.1
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for juhy0987/bert-recipe-lora
Base model
google-bert/bert-base-multilingual-cased