lmejias/w2v2-baseline

This model is a fine-tuned version of Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc-and-atcosim on the LiveATC recent data dataset. It achieves the following results on the evaluation set:

  • Loss: 4.3462
  • Wer: 104.4118

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.5429 7.1429 50 6.3329 102.3396
3.6092 14.2857 100 3.6703 103.8770
2.9412 21.4286 150 3.2563 107.3529
2.7277 28.5714 200 3.1662 105.3476
2.462 35.7143 250 3.1332 104.8797
2.0927 42.8571 300 3.1455 105.1471
1.7015 50.0 350 3.3032 107.5535
1.3212 57.1429 400 3.3018 106.7513
1.1036 64.2857 450 3.4413 106.6176
0.8124 71.4286 500 3.4884 104.9465
0.674 78.5714 550 3.5686 106.3503
0.565 85.7143 600 3.5688 106.4171
0.488 92.8571 650 3.6488 106.2834
0.4201 100.0 700 3.6693 106.5508
0.3683 107.1429 750 3.6873 107.4198
0.313 114.2857 800 3.6209 104.5455
0.3457 121.4286 850 3.6447 105.4144
0.323 128.5714 900 3.6727 102.8743
0.2825 135.7143 950 3.6922 109.8262
0.2748 142.8571 1000 3.8867 102.5401
0.2109 150.0 1050 3.8843 104.8128
0.255 157.1429 1100 3.8725 104.4118
0.2079 164.2857 1150 3.9449 103.3422
0.1968 171.4286 1200 3.8255 104.7460
0.1641 178.5714 1250 3.8195 105.0802
0.1488 185.7143 1300 3.8621 103.7433
0.1487 192.8571 1350 3.7639 104.9465
0.1445 200.0 1400 3.7507 106.6845
0.1194 207.1429 1450 3.8920 104.4786
0.0906 214.2857 1500 3.9927 106.0829
0.093 221.4286 1550 3.9899 107.0856
0.1008 228.5714 1600 3.9051 104.4118
0.0911 235.7143 1650 3.9279 103.4759
0.0859 242.8571 1700 3.9341 104.1444
0.0876 250.0 1750 4.0044 105.2807
0.0768 257.1429 1800 3.9745 103.7433
0.0747 264.2857 1850 4.0634 105.7487
0.0672 271.4286 1900 4.1271 106.1497
0.0654 278.5714 1950 4.0620 106.3503
0.0559 285.7143 2000 4.1474 106.9519
0.0335 292.8571 2050 4.0337 104.4118
0.0661 300.0 2100 4.2306 102.8743
0.0517 307.1429 2150 4.1846 104.2781
0.0328 314.2857 2200 4.1616 105.2139
0.0488 321.4286 2250 4.1904 106.4171
0.0307 328.5714 2300 4.2941 104.9465
0.0304 335.7143 2350 4.2107 103.6096
0.0472 342.8571 2400 4.2483 105.1471
0.0181 350.0 2450 4.2711 104.3449
0.015 357.1429 2500 4.2480 104.2781
0.0122 364.2857 2550 4.3409 104.4118
0.008 371.4286 2600 4.3071 104.8797
0.0159 378.5714 2650 4.2340 104.6791
0.0297 385.7143 2700 4.3997 104.2781
0.0065 392.8571 2750 4.3840 104.0107
0.0154 400.0 2800 4.3097 103.6096
0.0065 407.1429 2850 4.3581 104.0775
0.0035 414.2857 2900 4.3293 104.8128
0.0201 421.4286 2950 4.3565 103.9439
0.0095 428.5714 3000 4.3462 104.4118

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.21.4
Downloads last month
60
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for lmejias/w2v2-baseline

Dataset used to train lmejias/w2v2-baseline

Evaluation results