SqueezeNet-1.1: Optimized for Mobile Deployment
Imagenet classifier and general purpose backbone
SqueezeNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This model is an implementation of SqueezeNet-1.1 found here.
This repository provides scripts to run SqueezeNet-1.1 on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_classification
- Model Stats:
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 1.24M
- Model size (float): 4.73 MB
- Model size (w8a8): 1.30 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| SqueezeNet-1.1 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1.98 ms | 0 - 117 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1.933 ms | 1 - 116 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.1 ms | 0 - 136 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.097 ms | 1 - 135 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.597 ms | 0 - 3 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.596 ms | 1 - 3 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 0.602 ms | 0 - 4 MB | NPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.919 ms | 0 - 118 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.925 ms | 1 - 116 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 1.98 ms | 0 - 117 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1.933 ms | 1 - 116 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.594 ms | 0 - 3 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.599 ms | 1 - 3 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.088 ms | 0 - 124 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.074 ms | 0 - 122 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.6 ms | 0 - 4 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.597 ms | 1 - 3 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.919 ms | 0 - 118 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.925 ms | 1 - 116 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.409 ms | 0 - 137 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.415 ms | 0 - 134 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.373 ms | 0 - 105 MB | NPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.315 ms | 0 - 121 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.313 ms | 0 - 120 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.308 ms | 0 - 93 MB | NPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.244 ms | 0 - 121 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.238 ms | 0 - 119 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.282 ms | 1 - 92 MB | NPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.738 ms | 1 - 1 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.496 ms | 2 - 2 MB | NPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | TFLITE | 0.936 ms | 0 - 118 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | QNN_DLC | 1.471 ms | 0 - 120 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | ONNX | 2.948 ms | 0 - 14 MB | CPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | TFLITE | 0.635 ms | 0 - 3 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | QNN_DLC | 1.054 ms | 0 - 2 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | ONNX | 5.539 ms | 5 - 9 MB | CPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 0.623 ms | 0 - 115 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 0.934 ms | 0 - 115 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.269 ms | 0 - 136 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.476 ms | 0 - 129 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.199 ms | 0 - 2 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.383 ms | 0 - 3 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 0.529 ms | 0 - 3 MB | NPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.296 ms | 0 - 114 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.553 ms | 0 - 115 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 3.876 ms | 0 - 11 MB | GPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 2.579 ms | 0 - 5 MB | CPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 0.623 ms | 0 - 115 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 0.934 ms | 0 - 115 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.204 ms | 0 - 3 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.383 ms | 0 - 2 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.496 ms | 0 - 121 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 0.722 ms | 0 - 121 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.201 ms | 0 - 3 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.382 ms | 0 - 3 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.296 ms | 0 - 114 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.553 ms | 0 - 115 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.147 ms | 0 - 133 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.27 ms | 0 - 133 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.37 ms | 0 - 105 MB | NPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.112 ms | 0 - 119 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.179 ms | 0 - 119 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.337 ms | 0 - 94 MB | NPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 0.207 ms | 0 - 119 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 0.378 ms | 0 - 120 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 2.646 ms | 0 - 15 MB | CPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.095 ms | 0 - 117 MB | NPU | SqueezeNet-1.1.tflite |
| SqueezeNet-1.1 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.148 ms | 0 - 118 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.32 ms | 0 - 94 MB | NPU | SqueezeNet-1.1.onnx.zip |
| SqueezeNet-1.1 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.502 ms | 0 - 0 MB | NPU | SqueezeNet-1.1.dlc |
| SqueezeNet-1.1 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.477 ms | 0 - 0 MB | NPU | SqueezeNet-1.1.onnx.zip |
Installation
Install the package via pip:
pip install qai-hub-models
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.squeezenet1_1.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.squeezenet1_1.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.squeezenet1_1.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.squeezenet1_1 import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.squeezenet1_1.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.squeezenet1_1.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on SqueezeNet-1.1's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of SqueezeNet-1.1 can be found here.
References
- SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 54
