|
|
from math import pi |
|
|
from typing import Literal, Optional, Union |
|
|
|
|
|
import torch |
|
|
from einops import rearrange, repeat |
|
|
from torch import Tensor, broadcast_tensors, einsum, nn |
|
|
from torch.amp import autocast |
|
|
from torch.nn import Module |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def exists(val): |
|
|
return val is not None |
|
|
|
|
|
|
|
|
def default(val, d): |
|
|
return val if exists(val) else d |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def broadcat(tensors, dim=-1): |
|
|
broadcasted_tensors = broadcast_tensors(*tensors) |
|
|
return torch.cat(broadcasted_tensors, dim=dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
x = rearrange(x, "... (d r) -> ... d r", r=2) |
|
|
x1, x2 = x.unbind(dim=-1) |
|
|
x = torch.stack((-x2, x1), dim=-1) |
|
|
return rearrange(x, "... d r -> ... (d r)") |
|
|
|
|
|
|
|
|
@autocast("cuda", enabled=False) |
|
|
def apply_rotary_emb(freqs, t, start_index=0, scale=1.0, seq_dim=-2): |
|
|
dtype = t.dtype |
|
|
|
|
|
if t.ndim == 3: |
|
|
seq_len = t.shape[seq_dim] |
|
|
freqs = freqs[-seq_len:] |
|
|
|
|
|
rot_dim = freqs.shape[-1] |
|
|
end_index = start_index + rot_dim |
|
|
|
|
|
assert ( |
|
|
rot_dim <= t.shape[-1] |
|
|
), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}" |
|
|
|
|
|
t_left, t, t_right = ( |
|
|
t[..., :start_index], |
|
|
t[..., start_index:end_index], |
|
|
t[..., end_index:], |
|
|
) |
|
|
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) |
|
|
out = torch.cat((t_left, t, t_right), dim=-1) |
|
|
|
|
|
return out.type(dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def apply_learned_rotations(rotations, t, start_index=0, freq_ranges=None): |
|
|
if exists(freq_ranges): |
|
|
rotations = einsum("..., f -> ... f", rotations, freq_ranges) |
|
|
rotations = rearrange(rotations, "... r f -> ... (r f)") |
|
|
|
|
|
rotations = repeat(rotations, "... n -> ... (n r)", r=2) |
|
|
return apply_rotary_emb(rotations, t, start_index=start_index) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RotaryEmbedding(Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
custom_freqs: Optional[Tensor] = None, |
|
|
freqs_for: Union[ |
|
|
Literal["lang"], Literal["pixel"], Literal["constant"] |
|
|
] = "lang", |
|
|
theta=10000, |
|
|
max_freq=10, |
|
|
num_freqs=1, |
|
|
learned_freq=False, |
|
|
use_xpos=False, |
|
|
xpos_scale_base=512, |
|
|
interpolate_factor=1.0, |
|
|
theta_rescale_factor=1.0, |
|
|
seq_before_head_dim=False, |
|
|
cache_if_possible=True, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theta *= theta_rescale_factor ** (dim / (dim - 2)) |
|
|
|
|
|
self.freqs_for = freqs_for |
|
|
|
|
|
if exists(custom_freqs): |
|
|
freqs = custom_freqs |
|
|
elif freqs_for == "lang": |
|
|
freqs = 1.0 / ( |
|
|
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) |
|
|
) |
|
|
elif freqs_for == "pixel": |
|
|
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi |
|
|
elif freqs_for == "constant": |
|
|
freqs = torch.ones(num_freqs).float() |
|
|
|
|
|
self.cache_if_possible = cache_if_possible |
|
|
|
|
|
self.tmp_store("cached_freqs", None) |
|
|
self.tmp_store("cached_scales", None) |
|
|
|
|
|
self.freqs = nn.Parameter(freqs, requires_grad=learned_freq) |
|
|
|
|
|
self.learned_freq = learned_freq |
|
|
|
|
|
|
|
|
|
|
|
self.tmp_store("dummy", torch.tensor(0)) |
|
|
|
|
|
|
|
|
|
|
|
self.seq_before_head_dim = seq_before_head_dim |
|
|
self.default_seq_dim = -3 if seq_before_head_dim else -2 |
|
|
|
|
|
|
|
|
|
|
|
assert interpolate_factor >= 1.0 |
|
|
self.interpolate_factor = interpolate_factor |
|
|
|
|
|
|
|
|
|
|
|
self.use_xpos = use_xpos |
|
|
if not use_xpos: |
|
|
self.tmp_store("scale", None) |
|
|
return |
|
|
|
|
|
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) |
|
|
|
|
|
self.scale_base = xpos_scale_base |
|
|
self.tmp_store("scale", scale) |
|
|
|
|
|
|
|
|
|
|
|
self.apply_rotary_emb = staticmethod(apply_rotary_emb) |
|
|
|
|
|
@property |
|
|
def device(self): |
|
|
return self.dummy.device |
|
|
|
|
|
def tmp_store(self, key, value): |
|
|
self.register_buffer(key, value, persistent=False) |
|
|
|
|
|
def get_seq_pos(self, seq_len, device, dtype, offset=0): |
|
|
return ( |
|
|
torch.arange(seq_len, device=device, dtype=dtype) + offset |
|
|
) / self.interpolate_factor |
|
|
|
|
|
def rotate_queries_or_keys(self, t, seq_dim=None, offset=0): |
|
|
seq_dim = default(seq_dim, self.default_seq_dim) |
|
|
|
|
|
assert ( |
|
|
not self.use_xpos |
|
|
), "you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings" |
|
|
|
|
|
device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim] |
|
|
|
|
|
freqs = self.forward( |
|
|
self.get_seq_pos(seq_len, device=device, dtype=dtype, offset=offset), |
|
|
seq_len=seq_len, |
|
|
offset=offset, |
|
|
) |
|
|
|
|
|
if seq_dim == -3: |
|
|
freqs = rearrange(freqs, "n d -> n 1 d") |
|
|
|
|
|
return apply_rotary_emb(freqs, t, seq_dim=seq_dim) |
|
|
|
|
|
def rotate_queries_with_cached_keys(self, q, k, seq_dim=None, offset=0): |
|
|
seq_dim = default(seq_dim, self.default_seq_dim) |
|
|
|
|
|
q_len, k_len = q.shape[seq_dim], k.shape[seq_dim] |
|
|
assert q_len <= k_len |
|
|
|
|
|
rotated_q = self.rotate_queries_or_keys( |
|
|
q, seq_dim=seq_dim, offset=k_len - q_len + offset |
|
|
) |
|
|
rotated_k = self.rotate_queries_or_keys(k, seq_dim=seq_dim, offset=offset) |
|
|
|
|
|
rotated_q = rotated_q.type(q.dtype) |
|
|
rotated_k = rotated_k.type(k.dtype) |
|
|
|
|
|
return rotated_q, rotated_k |
|
|
|
|
|
def rotate_queries_and_keys(self, q, k, seq_dim=None): |
|
|
seq_dim = default(seq_dim, self.default_seq_dim) |
|
|
|
|
|
assert self.use_xpos |
|
|
device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim] |
|
|
|
|
|
seq = self.get_seq_pos(seq_len, dtype=dtype, device=device) |
|
|
|
|
|
freqs = self.forward(seq, seq_len=seq_len) |
|
|
scale = self.get_scale(seq, seq_len=seq_len).to(dtype) |
|
|
|
|
|
if seq_dim == -3: |
|
|
freqs = rearrange(freqs, "n d -> n 1 d") |
|
|
scale = rearrange(scale, "n d -> n 1 d") |
|
|
|
|
|
rotated_q = apply_rotary_emb(freqs, q, scale=scale, seq_dim=seq_dim) |
|
|
rotated_k = apply_rotary_emb(freqs, k, scale=scale**-1, seq_dim=seq_dim) |
|
|
|
|
|
rotated_q = rotated_q.type(q.dtype) |
|
|
rotated_k = rotated_k.type(k.dtype) |
|
|
|
|
|
return rotated_q, rotated_k |
|
|
|
|
|
def get_scale(self, t: Tensor, seq_len: Optional[int] = None, offset=0): |
|
|
assert self.use_xpos |
|
|
|
|
|
should_cache = self.cache_if_possible and exists(seq_len) |
|
|
|
|
|
if ( |
|
|
should_cache |
|
|
and exists(self.cached_scales) |
|
|
and (seq_len + offset) <= self.cached_scales.shape[0] |
|
|
): |
|
|
return self.cached_scales[offset : (offset + seq_len)] |
|
|
|
|
|
scale = 1.0 |
|
|
if self.use_xpos: |
|
|
power = (t - len(t) // 2) / self.scale_base |
|
|
scale = self.scale ** rearrange(power, "n -> n 1") |
|
|
scale = torch.cat((scale, scale), dim=-1) |
|
|
|
|
|
if should_cache: |
|
|
self.tmp_store("cached_scales", scale) |
|
|
|
|
|
return scale |
|
|
|
|
|
def get_axial_freqs(self, *dims): |
|
|
Colon = slice(None) |
|
|
all_freqs = [] |
|
|
|
|
|
for ind, dim in enumerate(dims): |
|
|
if self.freqs_for == "pixel": |
|
|
pos = torch.linspace(-1, 1, steps=dim, device=self.device) |
|
|
else: |
|
|
pos = torch.arange(dim, device=self.device) |
|
|
|
|
|
freqs = self.forward(pos, seq_len=dim) |
|
|
|
|
|
all_axis = [None] * len(dims) |
|
|
all_axis[ind] = Colon |
|
|
|
|
|
new_axis_slice = (Ellipsis, *all_axis, Colon) |
|
|
all_freqs.append(freqs[new_axis_slice]) |
|
|
|
|
|
all_freqs = broadcast_tensors(*all_freqs) |
|
|
return torch.cat(all_freqs, dim=-1) |
|
|
|
|
|
@autocast("cuda", enabled=False) |
|
|
def forward(self, t: Tensor, seq_len=None, offset=0): |
|
|
should_cache = ( |
|
|
self.cache_if_possible |
|
|
and not self.learned_freq |
|
|
and exists(seq_len) |
|
|
and self.freqs_for != "pixel" |
|
|
) |
|
|
|
|
|
if ( |
|
|
should_cache |
|
|
and exists(self.cached_freqs) |
|
|
and (offset + seq_len) <= self.cached_freqs.shape[0] |
|
|
): |
|
|
return self.cached_freqs[offset : (offset + seq_len)].detach() |
|
|
|
|
|
freqs = self.freqs |
|
|
|
|
|
freqs = einsum("..., f -> ... f", t.type(freqs.dtype), freqs) |
|
|
freqs = repeat(freqs, "... n -> ... (n r)", r=2) |
|
|
|
|
|
if should_cache: |
|
|
self.tmp_store("cached_freqs", freqs.detach()) |
|
|
|
|
|
return freqs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Rope2D: |
|
|
""" Helper class to apply RoPE2D as well as interpolate on the fly. """ |
|
|
|
|
|
def __init__(self, dim, use_cls_token=False): |
|
|
self.dim = dim |
|
|
self.use_cls_token = use_cls_token |
|
|
self.grid_size = None |
|
|
self.freq = None |
|
|
|
|
|
def init_tensors(self): |
|
|
self.rope = RotaryEmbedding(self.dim // 2) |
|
|
|
|
|
def update_grid(self, device, grid_h, grid_w): |
|
|
if self.grid_size != (grid_h, grid_w): |
|
|
self.grid_size = (grid_h, grid_w) |
|
|
|
|
|
self.rope = self.rope.to(device) |
|
|
|
|
|
if self.use_cls_token: |
|
|
|
|
|
grid_y_range = torch.arange(grid_h, device=device) + 1 |
|
|
grid_x_range = torch.arange(grid_w, device=device) + 1 |
|
|
else: |
|
|
grid_y_range = torch.arange(grid_h, device=device) |
|
|
grid_x_range = torch.arange(grid_w, device=device) |
|
|
|
|
|
freqs_y = self.rope(grid_y_range)[:, None].expand(grid_h, grid_w, -1) |
|
|
freqs_x = self.rope(grid_x_range)[None, :].expand(grid_h, grid_w, -1) |
|
|
freq = torch.cat([freqs_x, freqs_y], dim=-1).reshape(grid_h * grid_w, -1) |
|
|
|
|
|
if self.use_cls_token: |
|
|
freq = torch.cat( |
|
|
[torch.zeros(1, freq.shape[-1], device=device), freq], dim=0 |
|
|
) |
|
|
|
|
|
self.freq = freq[None, ...] |
|
|
|
|
|
self.freq = self.freq.to(device) |
|
|
|
|
|
def __call__(self, q, k): |
|
|
|
|
|
q = apply_rotary_emb(self.freq[:, None, :, :], q) |
|
|
k = apply_rotary_emb(self.freq[:, None, :, :], k) |
|
|
|
|
|
return q, k |
|
|
|