Spaces:
Sleeping
Sleeping
File size: 13,899 Bytes
7977c7d 5dc2ed8 7977c7d 5dc2ed8 1ec7405 7977c7d 1ec7405 7977c7d ee1a8a3 8951fba 4b33d4d ded097b 4b33d4d 7977c7d 0df948f 18fc263 7977c7d 8951fba 4b33d4d d18b34d 00d412c 4b33d4d 7977c7d 18fc263 1ec7405 8951fba 5dc2ed8 1ec7405 5dc2ed8 7977c7d 18fc263 8951fba 3318356 18fc263 7977c7d 8951fba 7977c7d 8951fba 7977c7d d9dbe7c 7977c7d 4b33d4d 8951fba 7977c7d 5dc2ed8 4b33d4d 1ec7405 8951fba 4b33d4d 18fc263 ded097b 5dc2ed8 1ec7405 7977c7d 1ec7405 18fc263 1ec7405 93b9242 1ec7405 8951fba 5dc2ed8 1ec7405 4b33d4d 5dc2ed8 4b33d4d 18fc263 5dc2ed8 a504116 5dc2ed8 1ec7405 00d412c 1ec7405 18fc263 1ec7405 5dc2ed8 1ec7405 8951fba 5dc2ed8 1ec7405 d18b34d 7977c7d bc94c66 5dc2ed8 1ec7405 5dc2ed8 18fc263 5dc2ed8 1ec7405 5dc2ed8 18fc263 bc94c66 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 bc94c66 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 1ec7405 5dc2ed8 bc94c66 7977c7d bc94c66 7977c7d 18fc263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
"""
Gradio demo for LexiMind multi-task NLP model.
Showcases the model's capabilities across three tasks:
- Summarization: Generates concise summaries of input text
- Emotion Detection: Multi-label emotion classification
- Topic Classification: Categorizes text into topics
Author: Oliver Perrin
Date: 2025-12-05
"""
from __future__ import annotations
import json
import sys
from pathlib import Path
import gradio as gr
# --------------- Path Setup ---------------
SCRIPT_DIR = Path(__file__).resolve().parent
PROJECT_ROOT = SCRIPT_DIR.parent
if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
from huggingface_hub import hf_hub_download
from src.inference.factory import create_inference_pipeline
from src.utils.logging import configure_logging, get_logger
configure_logging()
logger = get_logger(__name__)
# --------------- Constants ---------------
OUTPUTS_DIR = PROJECT_ROOT / "outputs"
EVAL_REPORT_PATH = OUTPUTS_DIR / "evaluation_report.json"
TRAINING_HISTORY_PATH = OUTPUTS_DIR / "training_history.json"
SAMPLE_TEXTS = [
"Global markets tumbled today as investors reacted to rising inflation concerns. The Federal Reserve hinted at potential interest rate hikes, sending shockwaves through technology and banking sectors. Analysts predict continued volatility as economic uncertainty persists.",
"Scientists at MIT have developed a breakthrough quantum computing chip that operates at room temperature. This advancement could revolutionize drug discovery, cryptography, and artificial intelligence. The research team published their findings in Nature.",
"The championship game ended in dramatic fashion as the underdog team scored in the final seconds to secure victory. Fans rushed the field in celebration, marking the team's first title in 25 years.",
]
# --------------- Pipeline Management ---------------
_pipeline = None
def get_pipeline():
"""Lazy-load the inference pipeline, downloading checkpoint if needed."""
global _pipeline
if _pipeline is not None:
return _pipeline
checkpoint_path = Path("checkpoints/best.pt")
if not checkpoint_path.exists():
checkpoint_path.parent.mkdir(parents=True, exist_ok=True)
hf_hub_download(
repo_id="OliverPerrin/LexiMind-Model",
filename="best.pt",
local_dir="checkpoints",
)
_pipeline, _ = create_inference_pipeline(
tokenizer_dir="artifacts/hf_tokenizer/",
checkpoint_path="checkpoints/best.pt",
labels_path="artifacts/labels.json",
model_config_path="configs/model/base.yaml",
)
return _pipeline
# --------------- Core Functions ---------------
def analyze(text: str) -> tuple[str, str, str]:
"""Run all three tasks and return formatted results."""
if not text or not text.strip():
return "Please enter text above to analyze.", "", ""
try:
pipe = get_pipeline()
# Run tasks
summary = pipe.summarize([text], max_length=128)[0].strip()
if not summary:
summary = "(Unable to generate summary)"
emotions = pipe.predict_emotions([text], threshold=0.3)[0] # Lower threshold
topic = pipe.predict_topics([text])[0]
# Format emotions with emoji
emotion_emoji = {
"joy": "π",
"love": "β€οΈ",
"anger": "π ",
"fear": "π¨",
"sadness": "π’",
"surprise": "π²",
"neutral": "π",
"admiration": "π€©",
"amusement": "π",
"annoyance": "π€",
"approval": "π",
"caring": "π€",
"confusion": "π",
"curiosity": "π€",
"desire": "π",
"disappointment": "π",
"disapproval": "π",
"disgust": "π€’",
"embarrassment": "π³",
"excitement": "π",
"gratitude": "π",
"grief": "π",
"nervousness": "οΏ½οΏ½",
"optimism": "π",
"pride": "π¦",
"realization": "π‘",
"relief": "π",
"remorse": "π",
}
if emotions.labels:
emotion_parts = []
for lbl, score in zip(emotions.labels[:5], emotions.scores[:5], strict=False):
emoji = emotion_emoji.get(lbl.lower(), "β’")
emotion_parts.append(f"{emoji} **{lbl.title()}** ({score:.0%})")
emotion_str = "\n".join(emotion_parts)
else:
emotion_str = "π No strong emotions detected"
# Format topic
topic_str = f"**{topic.label}**\n\nConfidence: {topic.confidence:.0%}"
return summary, emotion_str, topic_str
except Exception as e:
logger.error("Analysis failed: %s", e, exc_info=True)
return f"Error: {e}", "", ""
def load_metrics() -> str:
"""Load evaluation metrics and format as markdown."""
# Load evaluation report
eval_metrics = {}
if EVAL_REPORT_PATH.exists():
try:
with open(EVAL_REPORT_PATH) as f:
eval_metrics = json.load(f)
except Exception:
pass
# Load training history
train_metrics = {}
if TRAINING_HISTORY_PATH.exists():
try:
with open(TRAINING_HISTORY_PATH) as f:
train_metrics = json.load(f)
except Exception:
pass
# Get final validation metrics
val_final = train_metrics.get("val_epoch_3", {})
md = """
## π Model Performance
### Training Results (3 Epochs)
| Task | Metric | Final Score |
|------|--------|-------------|
| **Topic Classification** | Accuracy | **{topic_acc:.1%}** |
| **Emotion Detection** | F1 (training) | {emo_f1:.1%} |
| **Summarization** | ROUGE-like | {rouge:.1%} |
### Evaluation Results
| Metric | Value |
|--------|-------|
| Topic Accuracy | **{eval_topic:.1%}** |
| Emotion F1 (macro) | {eval_emo:.1%} |
| ROUGE-like | {eval_rouge:.1%} |
| BLEU | {eval_bleu:.3f} |
---
### Topic Classification Details
| Category | Precision | Recall | F1 |
|----------|-----------|--------|-----|
""".format(
topic_acc=val_final.get("topic_accuracy", 0),
emo_f1=val_final.get("emotion_f1", 0),
rouge=val_final.get("summarization_rouge_like", 0),
eval_topic=eval_metrics.get("topic", {}).get("accuracy", 0),
eval_emo=eval_metrics.get("emotion", {}).get("f1_macro", 0),
eval_rouge=eval_metrics.get("summarization", {}).get("rouge_like", 0),
eval_bleu=eval_metrics.get("summarization", {}).get("bleu", 0),
)
# Add per-class metrics
topic_report = eval_metrics.get("topic", {}).get("classification_report", {})
for cat, metrics in topic_report.items():
if cat in ["macro avg", "weighted avg", "micro avg"]:
continue
if isinstance(metrics, dict):
md += f"| {cat} | {metrics.get('precision', 0):.1%} | {metrics.get('recall', 0):.1%} | {metrics.get('f1-score', 0):.1%} |\n"
return md
def get_viz_path(filename: str) -> str | None:
"""Get visualization path if file exists."""
path = OUTPUTS_DIR / filename
return str(path) if path.exists() else None
# --------------- Gradio Interface ---------------
with gr.Blocks(
title="LexiMind - Multi-Task NLP",
theme=gr.themes.Soft(),
) as demo:
gr.Markdown(
"""
# π§ LexiMind
### Multi-Task Transformer for Document Analysis
A custom encoder-decoder Transformer trained on **summarization**, **emotion detection** (28 classes),
and **topic classification** (10 categories). Built from scratch with PyTorch.
> β οΈ **Note**: Summarization is experimental - the model works best on news-style articles.
"""
)
# --------------- Try It Tab ---------------
with gr.Tab("π Try It"):
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(
label="π Input Text",
lines=6,
placeholder="Enter or paste text to analyze (works best with news articles)...",
value=SAMPLE_TEXTS[0],
)
analyze_btn = gr.Button(
"π Analyze",
variant="primary",
size="sm",
)
gr.Markdown("**Sample Texts** (click to use):")
with gr.Row():
sample1_btn = gr.Button("π° Markets", size="sm", variant="secondary")
sample2_btn = gr.Button("π¬ Science", size="sm", variant="secondary")
sample3_btn = gr.Button("π Sports", size="sm", variant="secondary")
sample1_btn.click(fn=lambda: SAMPLE_TEXTS[0], outputs=text_input)
sample2_btn.click(fn=lambda: SAMPLE_TEXTS[1], outputs=text_input)
sample3_btn.click(fn=lambda: SAMPLE_TEXTS[2], outputs=text_input)
with gr.Column(scale=2):
gr.Markdown("### Results")
summary_out = gr.Textbox(
label="π Summary",
lines=3,
interactive=False,
)
with gr.Row():
with gr.Column():
gr.Markdown("**π Emotions**")
emotion_out = gr.Markdown(value="*Run analysis*")
with gr.Column():
gr.Markdown("**π Topic**")
topic_out = gr.Markdown(value="*Run analysis*")
analyze_btn.click(
fn=analyze,
inputs=text_input,
outputs=[summary_out, emotion_out, topic_out],
)
# --------------- Metrics Tab ---------------
with gr.Tab("π Metrics"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(load_metrics())
with gr.Column(scale=1):
confusion_path = get_viz_path("topic_confusion_matrix.png")
if confusion_path:
gr.Image(confusion_path, label="Confusion Matrix", show_label=True)
# --------------- Visualizations Tab ---------------
with gr.Tab("π¨ Visualizations"):
gr.Markdown("### Model Internals")
with gr.Row():
attn_path = get_viz_path("attention_visualization.png")
if attn_path:
gr.Image(attn_path, label="Self-Attention Pattern")
pos_path = get_viz_path("positional_encoding_heatmap.png")
if pos_path:
gr.Image(pos_path, label="Positional Encodings")
with gr.Row():
multi_path = get_viz_path("multihead_attention_visualization.png")
if multi_path:
gr.Image(multi_path, label="Multi-Head Attention")
single_path = get_viz_path("single_vs_multihead.png")
if single_path:
gr.Image(single_path, label="Single vs Multi-Head Comparison")
# --------------- Architecture Tab ---------------
with gr.Tab("π§ Architecture"):
gr.Markdown(
"""
### Model Architecture
| Component | Configuration |
|-----------|---------------|
| **Base** | Custom Transformer (encoder-decoder) |
| **Initialization** | FLAN-T5-base weights |
| **Encoder** | 6 layers, 768 hidden dim, 12 heads |
| **Decoder** | 6 layers with cross-attention |
| **Activation** | Gated-GELU |
| **Position** | Relative position bias |
### Training Configuration
| Setting | Value |
|---------|-------|
| **Optimizer** | AdamW (lr=2e-5, wd=0.01) |
| **Scheduler** | Cosine with 1000 warmup steps |
| **Batch Size** | 14 Γ 3 accumulation = 42 effective |
| **Precision** | TF32 (Ampere GPU) |
| **Compilation** | torch.compile (inductor) |
### Datasets
| Task | Dataset | Size |
|------|---------|------|
| **Summarization** | CNN/DailyMail + BookSum | ~110K |
| **Emotion** | GoEmotions | ~43K (28 labels) |
| **Topic** | Yahoo Answers | ~200K (10 classes) |
"""
)
# --------------- About Tab ---------------
with gr.Tab("βΉοΈ About"):
gr.Markdown(
"""
### About LexiMind
LexiMind is a **portfolio project** demonstrating end-to-end machine learning engineering:
β
Custom Transformer implementation from scratch
β
Multi-task learning with shared encoder
β
Production-ready inference pipeline
β
Comprehensive evaluation and visualization
β
CI/CD with GitHub Actions
### Known Limitations
- **Summarization** quality is limited (needs more training epochs)
- **Emotion detection** has low F1 due to class imbalance in GoEmotions
- Best results on **news-style text** (training domain)
### Links
- π [GitHub Repository](https://github.com/OliverPerrin/LexiMind)
- π€ [Model on HuggingFace](https://huggingface.co/OliverPerrin/LexiMind-Model)
---
**Built by Oliver Perrin** | December 2025
"""
)
# --------------- Entry Point ---------------
if __name__ == "__main__":
get_pipeline() # Pre-load to fail fast if checkpoint missing
demo.launch(server_name="0.0.0.0", server_port=7860)
|