Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import base64 | |
| import gradio as gr | |
| from PIL import Image | |
| from gradio_client import Client | |
| import numpy as np | |
| from io import BytesIO | |
| DESCRIPTION = "# SDXL Texture" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
| ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1" | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def generate_normal_map(image): | |
| if not isinstance(image, Image.Image): | |
| image = Image.open(BytesIO(image)) | |
| # Convert image to grayscale | |
| grayscale = image.convert("L") | |
| grayscale_np = np.array(grayscale) | |
| # Compute gradients | |
| grad_x, grad_y = np.gradient(grayscale_np.astype(float)) | |
| # Normalize gradients | |
| grad_x = (grad_x - grad_x.min()) / (grad_x.max() - grad_x.min()) | |
| grad_y = (grad_y - grad_y.min()) / (grad_y.max() - grad_y.min()) | |
| # Create normal map | |
| normal_map = np.dstack((grad_x, grad_y, np.ones_like(grad_x))) | |
| normal_map = (normal_map * 255).astype(np.uint8) | |
| return Image.fromarray(normal_map) | |
| def generate_image( | |
| prompt: str, | |
| additional_prompt: str = "", | |
| negative_prompt: str = "", | |
| use_negative_prompt: bool = False, | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale_base: float = 5.0, | |
| guidance_scale_refiner: float = 5.0, | |
| num_inference_steps_base: int = 25, | |
| num_inference_steps_refiner: int = 25, | |
| apply_refiner: bool = False, | |
| ): | |
| if additional_prompt != "": | |
| additional_prompt += ", " | |
| client = Client("hysts/SDXL") | |
| image = client.predict( | |
| prompt=additional_prompt+prompt, | |
| negative_prompt=negative_prompt, | |
| prompt_2="", | |
| negative_prompt_2="", | |
| use_negative_prompt=use_negative_prompt, | |
| use_prompt_2=False, | |
| use_negative_prompt_2=False, | |
| seed=seed, | |
| width=width, | |
| height=height, | |
| guidance_scale_base=guidance_scale_base, | |
| guidance_scale_refiner=guidance_scale_refiner, | |
| num_inference_steps_base=num_inference_steps_base, | |
| num_inference_steps_refiner=num_inference_steps_refiner, | |
| apply_refiner=apply_refiner, | |
| api_name="/predict", | |
| ) | |
| normal_map = generate_normal_map(Image.open(image)) | |
| return image, normal_map | |
| examples = [ | |
| "A texture of grey wood, close-up, high contrast", | |
| "A 4K texture of cobblestone, sharp rocks, hd material", | |
| "A texture of white marble, light grey, seamless", | |
| ] | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| with gr.Row(): | |
| result_image = gr.Image(label="Texture", show_label=True) | |
| result_normal = gr.Image(label="Normal", show_label=True) | |
| with gr.Accordion("Advanced options", open=False): | |
| use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
| negative_prompt = gr.Textbox( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=True, | |
| value="anatomy, text, logos, faces, animals, recognizable objects, cube, sphere, human, hands", | |
| ) | |
| additional_prompt = gr.Textbox( | |
| label="Additional prompt", | |
| max_lines=1, | |
| placeholder="Enter an additional prompt", | |
| visible=True, | |
| value="((Seamless texture)), versatile pattern, high resolution, detailed design, subtle patterns, non-repetitive, smooth edges, square", | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER) | |
| with gr.Row(): | |
| guidance_scale_base = gr.Slider( | |
| label="Guidance scale for base", | |
| minimum=1, | |
| maximum=20, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps_base = gr.Slider( | |
| label="Number of inference steps for base", | |
| minimum=10, | |
| maximum=100, | |
| step=1, | |
| value=25, | |
| ) | |
| with gr.Row(visible=False) as refiner_params: | |
| guidance_scale_refiner = gr.Slider( | |
| label="Guidance scale for refiner", | |
| minimum=1, | |
| maximum=20, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps_refiner = gr.Slider( | |
| label="Number of inference steps for refiner", | |
| minimum=10, | |
| maximum=100, | |
| step=1, | |
| value=25, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| cache_examples=False, | |
| inputs=prompt, | |
| outputs=[result_image, result_normal], | |
| fn=generate_image, | |
| ) | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| apply_refiner.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=apply_refiner, | |
| outputs=refiner_params, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| additional_prompt.submit, | |
| negative_prompt.submit, | |
| run_button.click, | |
| ], | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=generate_image, | |
| inputs=[ | |
| prompt, | |
| additional_prompt, | |
| negative_prompt, | |
| use_negative_prompt, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale_base, | |
| guidance_scale_refiner, | |
| num_inference_steps_base, | |
| num_inference_steps_refiner, | |
| apply_refiner, | |
| ], | |
| outputs=[result_image, result_normal], | |
| api_name="run", | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(ssr_mode=False) | |