Spaces:
Runtime error
Runtime error
| # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from unittest.mock import MagicMock | |
| import pytest | |
| import torch | |
| from nemo.lightning.io.hf import HFCheckpointIO | |
| def mock_model(): | |
| model = MagicMock() | |
| model.save_pretrained = MagicMock() | |
| model.load_pretrained = MagicMock(return_value={'mock_state_dict': torch.tensor([1.0])}) | |
| return model | |
| def checkpoint_io(mock_model, tmp_path): | |
| return HFCheckpointIO(model=mock_model, adapter_only=False) | |
| def adapter_checkpoint_io(mock_model, tmp_path): | |
| return HFCheckpointIO(model=mock_model, adapter_only=True) | |
| def save_and_load_checkpoint(checkpoint_io, checkpoint, path, adapter_only=False): | |
| try: | |
| if adapter_only: | |
| adapter_path = path / "hf_adapter" | |
| adapter_path.mkdir(parents=True, exist_ok=True) | |
| (adapter_path / "adapter_config.json").write_text('{}') | |
| checkpoint_io.save_checkpoint(checkpoint, path) | |
| assert (path / "trainer.pt").exists() | |
| loaded_checkpoint = checkpoint_io.load_checkpoint(path) | |
| assert 'state_dict' in loaded_checkpoint | |
| finally: | |
| for subdir in path.iterdir(): | |
| if subdir.is_dir(): | |
| for file in subdir.iterdir(): | |
| file.unlink() | |
| subdir.rmdir() | |
| else: | |
| subdir.unlink() | |
| path.rmdir() | |
| def test_save_and_load_checkpoint(checkpoint_io, tmp_path): | |
| checkpoint = {'state_dict': {'layer.weight': torch.tensor([1.0])}} | |
| path = tmp_path / "checkpoint" | |
| save_and_load_checkpoint(checkpoint_io, checkpoint, path) | |
| def test_save_and_load_checkpoint_adapter_only(adapter_checkpoint_io, tmp_path): | |
| checkpoint = {'state_dict': {'model.model.lora_a.weight': torch.tensor([1.0])}} | |
| path = tmp_path / "checkpoint" | |
| save_and_load_checkpoint(adapter_checkpoint_io, checkpoint, path, adapter_only=True) | |
| def test_remove_checkpoint(checkpoint_io, tmp_path): | |
| path = tmp_path / "checkpoint" | |
| path.mkdir() | |
| (path / "trainer.pt").touch() | |
| checkpoint_io.remove_checkpoint(path) | |
| assert not path.exists() | |