subhankarg's picture
Upload folder using huggingface_hub
0558aa4 verified
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import MagicMock
import pytest
import torch
from nemo.lightning.io.hf import HFCheckpointIO
@pytest.fixture
def mock_model():
model = MagicMock()
model.save_pretrained = MagicMock()
model.load_pretrained = MagicMock(return_value={'mock_state_dict': torch.tensor([1.0])})
return model
@pytest.fixture
def checkpoint_io(mock_model, tmp_path):
return HFCheckpointIO(model=mock_model, adapter_only=False)
@pytest.fixture
def adapter_checkpoint_io(mock_model, tmp_path):
return HFCheckpointIO(model=mock_model, adapter_only=True)
def save_and_load_checkpoint(checkpoint_io, checkpoint, path, adapter_only=False):
try:
if adapter_only:
adapter_path = path / "hf_adapter"
adapter_path.mkdir(parents=True, exist_ok=True)
(adapter_path / "adapter_config.json").write_text('{}')
checkpoint_io.save_checkpoint(checkpoint, path)
assert (path / "trainer.pt").exists()
loaded_checkpoint = checkpoint_io.load_checkpoint(path)
assert 'state_dict' in loaded_checkpoint
finally:
for subdir in path.iterdir():
if subdir.is_dir():
for file in subdir.iterdir():
file.unlink()
subdir.rmdir()
else:
subdir.unlink()
path.rmdir()
def test_save_and_load_checkpoint(checkpoint_io, tmp_path):
checkpoint = {'state_dict': {'layer.weight': torch.tensor([1.0])}}
path = tmp_path / "checkpoint"
save_and_load_checkpoint(checkpoint_io, checkpoint, path)
def test_save_and_load_checkpoint_adapter_only(adapter_checkpoint_io, tmp_path):
checkpoint = {'state_dict': {'model.model.lora_a.weight': torch.tensor([1.0])}}
path = tmp_path / "checkpoint"
save_and_load_checkpoint(adapter_checkpoint_io, checkpoint, path, adapter_only=True)
def test_remove_checkpoint(checkpoint_io, tmp_path):
path = tmp_path / "checkpoint"
path.mkdir()
(path / "trainer.pt").touch()
checkpoint_io.remove_checkpoint(path)
assert not path.exists()